LCM Walk

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 47    Accepted Submission(s): 31

Problem Description
A frog has just learned some number theory, and can't wait to show his ability to his girlfriend.

Now the frog is sitting on a grid map of infinite rows and columns. Rows are numbered 1,2,⋯ from the bottom, so are the columns. At first the frog is sitting at grid (sx,sy), and begins his journey.

To show his girlfriend his talents in math, he uses a special way of jump. If currently the frog is at the grid (x,y), first of all, he will find the minimum z that can be divided by both x and y, and jump exactly z steps to the up, or to the right. So the next possible grid will be (x+z,y), or (x,y+z).

After a finite number of steps (perhaps zero), he finally finishes at grid (ex,ey). However, he is too tired and he forgets the position of his starting grid!

It will be too stupid to check each grid one by one, so please tell the frog the number of possible starting grids that can reach (ex,ey)!

 
Input
First line contains an integer T, which indicates the number of test cases.

Every test case contains two integers ex and ey, which is the destination grid.

⋅ 1≤T≤1000.
⋅ 1≤ex,ey≤109.

 
Output
For every test case, you should output "Case #x: y", where x indicates the case number and counts from 1 and y is the number of possible starting grids.
 
Sample Input
3
6 10
6 8
2 8
 
Sample Output
Case #1: 1
Case #2: 2
Case #3: 3
 
Source
 
 

2015acm上海区域赛的第三道水题。。第一开始以为是推公式然后o(1)求出答案,然而貌似并不能,最后还是想了个暴力枚举公因子吧。。

容易得知,x,y里面肯定是较小的数不变,较大的那个数是从之前某个数变化来的,假设x>y,(x,y)是从(x1,y)变化来的,那么:

x = x1 + x1*y/gcd(x1,y);则x1 = x/(1 + y/gcd(x1,y));

那么就很好说了,枚举gcd(x1,y),即枚举y的因子,反求出x1,然后判断x1是否合理,合理的话就继续递归(x1,y),这里枚举因子有一个细节需要

注意,就是对于y是完全平方数的时候,枚举上界是sqrt(y-0.5),然后对于x = sqrt(y)的情况特判,因为忘了注意这点此贡献了一次WA。。

为什么要这样子呢。。因为O(根号n)枚举因子时,如果i是y的因子,那么y/i也是y的因子,这里要判断两个因子,但是i*i=y时,必须只判断一次

#include <iostream>
#include <cstdio>
#include <string>
#include <vector>
#include <cstring>
#include <cmath>
using namespace std; int t;
int x,y;
int ans; int gcd(int x, int y)
{
return x == ?y : gcd(y%x,x);
} void dfs(int x, int y)
{
ans++;
if(x < y) swap(x,y);
int p = sqrt(y - 0.5);
int i;
for(i = ; i <= p; ++i)
{
if(y % i == )
{
if(x%(+y/i) == &&gcd(x/(+y/i),y) == i) dfs(x/(+y/i),y);
if(x%(+i) == &&gcd(x/(+i),y) == y/i) dfs(x/(+i),y);
}
}
if(i*i == y)
{
if(x%(+i) == &&gcd(x/(+i),y) == i) dfs(x/(+i),y);
}
} int main()
{
int cas = ;
for(cin >> t; cas <= t; ++cas)
{
ans = ;
scanf("%d%d",&x,&y);
dfs(x,y);
printf("Case #%d: %d\n",cas,ans);
}
}

HDU5584 LCM Walk 数论的更多相关文章

  1. hdu-5584 LCM Walk(数论)

    题目链接:LCM Walk Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others)To ...

  2. L - LCM Walk HDU - 5584 (数论)

    题目链接: L - LCM Walk HDU - 5584 题目大意:首先是T组测试样例,然后给你x和y,这个指的是终点.然后问你有多少个起点能走到这个x和y.每一次走的规则是(m1,m2)到(m1+ ...

  3. HDU 5584 LCM Walk 数学

    LCM Walk Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5584 ...

  4. [HDOJ5584]LCM Walk(数论,规律)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5584 给一个坐标(ex, ey),问是由哪几个点走过来的.走的规则是x或者y加上他们的最小公倍数lcm ...

  5. HDU - 5584 LCM Walk (数论 GCD)

    A frog has just learned some number theory, and can't wait to show his ability to his girlfriend. No ...

  6. LCM Walk HDU - 5584

    A frog has just learned some number theory, and can't wait to show his ability to his girlfriend. No ...

  7. hdu 5584 LCM Walk(数学推导公式,规律)

    Problem Description A frog has just learned some number theory, and can't wait to show his ability t ...

  8. HDU 5584 LCM Walk(数学题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5584 题意:(x, y)经过一次操作可以变成(x+z, y)或(x, y+z)现在给你个点(ex, e ...

  9. hdu 5584 LCM Walk

    没用运用好式子...想想其实很简单,首先应该分析,由于每次加一个LCM是大于等于其中任何一个数的,那么我LCM加在哪个数上面,那个数就是会变成大的,这样想,我们就知道,每个(x,y)对应就一种情况. ...

随机推荐

  1. nginx 配置自签名的ssl证书

    最近要搭一个https的测试环境,使用nginx做反向代理. 网上找过不少资料,但过程不是很完整,吃了不少亏,故把自己的操作过程总结下来.如果你刚好遇到这个问题,希望对你有帮助! ********** ...

  2. Python操作Redis的5种数据类型

    1.连接redis(两种方式) # decode_responses=True: 解决获取的值类型是bytes字节问题 r = redis.Redis(host=', db=0, decode_res ...

  3. 【C#通用类】日志记录类

    using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Tex ...

  4. JAVA把字符串当作表达式执行

    直接能够穿一个字符串执行 private static void test(String pm1) { ScriptEngineManager manager = new ScriptEngineMa ...

  5. (一)MVP设计模式

    一.MVP介绍      随着UI创建技术的功能日益增强,UI层也履行着越来越多的职责.为了更好地细分视图(View)与模型(Model)的功能,让View专注于处理数据的可视化以及与用户的交互,同时 ...

  6. oracle之时间转换

    :取得当前日期是本月的第几周 SQL> select to_char(sysdate,'YYYYMMDD W HH24:MI:SS') from dual; TO_CHAR(SYSDATE,'Y ...

  7. 【回顾整理】HTML+CSS个的两个实战项目

    一:麦子商城首页制作 代码: <!DOCTYPE html> <html> <head lang="en"> <meta charset= ...

  8. EF中的自动追踪与代理

    自动追踪 EF框架会自动追踪实体的变化(通过比较实体的当前值与原始值). 默认情况下,以下方法会自动触发实体变化的追踪 DbSet.Find DbSet.Local DbSet.Remove DbSe ...

  9. 华为oj 统计字符串不同字符

    #include <stdio.h> #include <string.h> int firstSingle(char *str) { int hash[128]={0}; f ...

  10. 线段树:Segment Tree(单点修改/区间修改模板) C++

    线段树是非常有效的数据结构,可以快速的维护单点修改,区域修改,查询最大值,最小值等功能. 同时,它也很重要.如果有一天比赛,你卡在了一道线段树模板题目上,这就真的尴尬了.不过,随着时代的进步,题目也越 ...