LCM Walk

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 47    Accepted Submission(s): 31

Problem Description
A frog has just learned some number theory, and can't wait to show his ability to his girlfriend.

Now the frog is sitting on a grid map of infinite rows and columns. Rows are numbered 1,2,⋯ from the bottom, so are the columns. At first the frog is sitting at grid (sx,sy), and begins his journey.

To show his girlfriend his talents in math, he uses a special way of jump. If currently the frog is at the grid (x,y), first of all, he will find the minimum z that can be divided by both x and y, and jump exactly z steps to the up, or to the right. So the next possible grid will be (x+z,y), or (x,y+z).

After a finite number of steps (perhaps zero), he finally finishes at grid (ex,ey). However, he is too tired and he forgets the position of his starting grid!

It will be too stupid to check each grid one by one, so please tell the frog the number of possible starting grids that can reach (ex,ey)!

 
Input
First line contains an integer T, which indicates the number of test cases.

Every test case contains two integers ex and ey, which is the destination grid.

⋅ 1≤T≤1000.
⋅ 1≤ex,ey≤109.

 
Output
For every test case, you should output "Case #x: y", where x indicates the case number and counts from 1 and y is the number of possible starting grids.
 
Sample Input
3
6 10
6 8
2 8
 
Sample Output
Case #1: 1
Case #2: 2
Case #3: 3
 
Source
 
 

2015acm上海区域赛的第三道水题。。第一开始以为是推公式然后o(1)求出答案,然而貌似并不能,最后还是想了个暴力枚举公因子吧。。

容易得知,x,y里面肯定是较小的数不变,较大的那个数是从之前某个数变化来的,假设x>y,(x,y)是从(x1,y)变化来的,那么:

x = x1 + x1*y/gcd(x1,y);则x1 = x/(1 + y/gcd(x1,y));

那么就很好说了,枚举gcd(x1,y),即枚举y的因子,反求出x1,然后判断x1是否合理,合理的话就继续递归(x1,y),这里枚举因子有一个细节需要

注意,就是对于y是完全平方数的时候,枚举上界是sqrt(y-0.5),然后对于x = sqrt(y)的情况特判,因为忘了注意这点此贡献了一次WA。。

为什么要这样子呢。。因为O(根号n)枚举因子时,如果i是y的因子,那么y/i也是y的因子,这里要判断两个因子,但是i*i=y时,必须只判断一次

#include <iostream>
#include <cstdio>
#include <string>
#include <vector>
#include <cstring>
#include <cmath>
using namespace std; int t;
int x,y;
int ans; int gcd(int x, int y)
{
return x == ?y : gcd(y%x,x);
} void dfs(int x, int y)
{
ans++;
if(x < y) swap(x,y);
int p = sqrt(y - 0.5);
int i;
for(i = ; i <= p; ++i)
{
if(y % i == )
{
if(x%(+y/i) == &&gcd(x/(+y/i),y) == i) dfs(x/(+y/i),y);
if(x%(+i) == &&gcd(x/(+i),y) == y/i) dfs(x/(+i),y);
}
}
if(i*i == y)
{
if(x%(+i) == &&gcd(x/(+i),y) == i) dfs(x/(+i),y);
}
} int main()
{
int cas = ;
for(cin >> t; cas <= t; ++cas)
{
ans = ;
scanf("%d%d",&x,&y);
dfs(x,y);
printf("Case #%d: %d\n",cas,ans);
}
}

HDU5584 LCM Walk 数论的更多相关文章

  1. hdu-5584 LCM Walk(数论)

    题目链接:LCM Walk Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others)To ...

  2. L - LCM Walk HDU - 5584 (数论)

    题目链接: L - LCM Walk HDU - 5584 题目大意:首先是T组测试样例,然后给你x和y,这个指的是终点.然后问你有多少个起点能走到这个x和y.每一次走的规则是(m1,m2)到(m1+ ...

  3. HDU 5584 LCM Walk 数学

    LCM Walk Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5584 ...

  4. [HDOJ5584]LCM Walk(数论,规律)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5584 给一个坐标(ex, ey),问是由哪几个点走过来的.走的规则是x或者y加上他们的最小公倍数lcm ...

  5. HDU - 5584 LCM Walk (数论 GCD)

    A frog has just learned some number theory, and can't wait to show his ability to his girlfriend. No ...

  6. LCM Walk HDU - 5584

    A frog has just learned some number theory, and can't wait to show his ability to his girlfriend. No ...

  7. hdu 5584 LCM Walk(数学推导公式,规律)

    Problem Description A frog has just learned some number theory, and can't wait to show his ability t ...

  8. HDU 5584 LCM Walk(数学题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5584 题意:(x, y)经过一次操作可以变成(x+z, y)或(x, y+z)现在给你个点(ex, e ...

  9. hdu 5584 LCM Walk

    没用运用好式子...想想其实很简单,首先应该分析,由于每次加一个LCM是大于等于其中任何一个数的,那么我LCM加在哪个数上面,那个数就是会变成大的,这样想,我们就知道,每个(x,y)对应就一种情况. ...

随机推荐

  1. ORACLE REFERENCES FRO TEST

    [JSU]LJDragon's Oracle course notes In the first semester, junior year Oracle考前复习 试题结构分析: 1.选择题2x10, ...

  2. iOS中XMPP简单聊天实现 好友和聊天

    版权声明本文由陈怀哲首发自简书:http://www.jianshu.com/users/9f2e536b78fd/latest_articles;微信公众号:陈怀哲(chenhuaizhe2016) ...

  3. 关于使用axis调用webservice接口方法

    1.概述: 我们有时候会调用webserviec接口,我们向接口发送请求参数,从接口接收返回值. 2.形式: package client; import org.apache.axis.client ...

  4. SSO跨域解决方案

    单点登录(Single Sign On),简称为 SSO,是目前比较流行的企业业务整合的解决方案之一.SSO的定义是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统.它包括可 以将 ...

  5. oracle递归函数

    oracle start with connect by 使用方法 oracle中 connect by prior 递归算法  Oracle中start with...connect by prio ...

  6. Nyoj 43 24 Point game 【DFS】

    24 Point game 时间限制:3000 ms  |  内存限制:65535 KB 难度:5 描写叙述 There is a game which is called 24 Point game ...

  7. lua pbc

    先要将proto文件编译成.pb文件,然后再动态绑定实现lua protobuffer,这就需要了解云风做的pbc的项目,地址为:https://github.com/cloudwu/pbc/blob ...

  8. MySQL数据库的环境及简单操作

    ***********************************************声明*************************************************** ...

  9. Hibernate Validation各注解的用法

    Bean Validation 中内置的 constraint @Null 被注释的元素必须为 null @NotNull 被注释的元素必须不为 null @AssertTrue 被注释的元素必须为 ...

  10. USB通讯协议之深入理解

    0. 基本概念 一个[传输](控制.批量.中断.等时):由多个[事务]组成: 一个[事务](IN.OUT.SETUP):由一多个[Packet]组成. USB数据在[主机软件]与[USB设备特定的端点 ...