Examining the Rooms(dp,斯特灵数)
Examining the Rooms
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1305 Accepted Submission(s): 796
3 1
3 2
4 2
0.6667
0.6250
Sample Explanation
When N = 3, there are 6 possible distributions of keys:
Room 1 Room 2 Room 3 Destroy Times
#1 Key 1 Key 2 Key 3 Impossible
#2 Key 1 Key 3 Key 2 Impossible
#3 Key 2 Key 1 Key 3 Two
#4 Key 3 Key 2 Key 1 Two
#5 Key 2 Key 3 Key 1 One
#6 Key 3 Key 1 Key 2 One
In the first two distributions, because Key 1 is locked in Room 1 itself and you can’t destroy Room 1, it is impossible to open Room 1.
In the third and forth distributions, you have to destroy Room 2 and 3 both. In the last two distributions, you only need to destroy one of Room 2 or Room
题解:
给出N个房间,每个房间的钥匙随机放在某个房间内,概率相同。有K次炸门的机会,求能进入所有房间的可能性为多大。
dp[i][j]代表i个房间形成j个环的总数;
则dp[i][j]=(i-1)*dp[i-1][j]+dp[i-1][j-1];
由于1号房间不能被砸,所以dp[i][j]-dp[i-1][j-1](减去1号房间被砸的总数)代表1号房间不被砸的总数,结果从1加到k除以总方案数(n的阶乘)即可;
代码:
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
const int INF=0x3f3f3f3f;
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x)
#define PI(x) printf("%d",x)
typedef long long LL;
//S(P,K)=(P-1)*S(P-1,K)+S(P-1,K-1)
LL dp[][];
void db(){
for(int i=;i<=;i++){
dp[i][]=;
dp[i][i]=;
for(int j=;j<i;j++)
dp[i][j]=(i-)*dp[i-][j]+dp[i-][j-];
}
}
LL fac(int n){
LL temp=;
while(n>){
temp*=n;
n--;
}
return temp;
}
int main(){
int T,N,K;
mem(dp,);
db();
SI(T);
while(T--){
scanf("%d%d",&N,&K);
LL ans=;
for(int i=;i<=K;i++)ans+=dp[N][i]-dp[N-][i-];
printf("%.4lf\n",1.0*ans/fac(N));
}
return ;
}
Examining the Rooms(dp,斯特灵数)的更多相关文章
- Examining the Rooms - 第一类斯特灵数
---恢复内容开始--- 2017-08-10 20:32:37 writer:pprp 题意如下: Recently in Teddy's hometown there is a competiti ...
- cf932E. Team Work(第二类斯特灵数 组合数)
题意 题目链接 Sol 这篇题解写的非常详细 首先要知道第二类斯特灵数的一个性质 \[m^n = \sum_{i = 0}^m C_{n}^i S(n, i) i!\] 证明可以考虑组合意义:\(m^ ...
- HDU 3625 Examining the Rooms【第一类斯特灵数】
<题目链接> <转载于 >>> > 题目大意:有n个锁着的房间和对应n扇门的n把钥匙,每个房间内有一把钥匙.你可以破坏一扇门,取出其中的钥匙,然后用取出钥匙打 ...
- 斯特灵数 (Stirling数)
@维基百科 在组合数学,Stirling数可指两类数,都是由18世纪数学家James Stirling提出的. 第一类 s(4,2)=11 第一类Stirling数是有正负的,其绝对值是个元素的项目分 ...
- HDU 3625 Examining the Rooms:第一类stirling数
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3625 题意: 有n个房间,每个房间里放着一把钥匙,对应能开1到n号房间的门. 除了1号门,你可以踹开任 ...
- counting the buildings - 第一类斯特灵数
2017-08-10 21:10:08 writer:pprp //TLE #include <iostream> #include <cstdio> #include < ...
- Rank - 第二类斯特灵数
2017-08-10 20:32:37 writer:pprp 题意如下: Recently in Teddy's hometown there is a competition named &quo ...
- 斯特灵(Stirling)数
http://zh.wikipedia.org/wiki/%E6%96%AF%E7%89%B9%E7%81%B5%E6%95%B0 第一类:n个元素分成k个非空循环排列(环)的方法总数 递推式:s(n ...
- HDU 3625 Examining the Rooms
题目大意:有n个房间,n!个钥匙,在房间中,最多可以破k扇门,然后得到其中的钥匙,去开其它的门,但是第一扇门不可以破开,求可以打开所有门的概率. 题解:首先,建立这样的一个模型,题目相当于给出一个图, ...
随机推荐
- TCP和HTTP
TCP和HTTP 2013-11-01 11:29 6564人阅读 评论(2) 收藏 举报 分类: 计算机—杂七杂八(15) 1.TCP连接 手机能够使用联网功能是因为手机底层实现了TCP/IP协议, ...
- registered the JBDC driver [oracle.jdbc.OracleDriver] but failed to unregister it when the web application was stopped. (转)
最近项目中遇见一问题,在开发环境没有问题的代码,到了生产环境就会报如下错误: 严重: A web application registered the JBDC driver [oracle.jd ...
- logstash Codec
Logstash 使用一个名叫FileWatch的Ruby Gem库来监听文件变化,这个库支持glob扩展文件路径, 而且会记录一个叫.sincedb的数据库文件来跟踪被监听日志文件的当前读取位置,所 ...
- Asp.Net构架(Http请求处理流程)、Asp.Net 构架(Http Handler 介绍)、Asp.Net 构架(HttpModule 介绍)
转载: HttpHaddler,HttpModule http://blog.csdn.net/jiuqiyuliang/article/details/18713451 http://www.cnb ...
- fabric 安装及使用
官网地址 1.安装 pip install fabric 依赖 Paramiko .PyCrypto库 以下依赖肯能要手动安装 #安装 pycrypto 密码库pip install pycrypto ...
- git 之别名配置
在git操作中有很多命令我们自己可以起别名,以提高操作效率. 1. 配置方式 1)项目级别的配置,仅对当前项目生效(将写入到.git/config文件中) $ git config --glob ...
- 小米手机与魅族的PK战结果 说明了什么
我国电子商务面临的问题,淘宝退出百度无疑是一个遗憾.当在网上购物时.用户面临的一个非常大的问题就是怎样在众多的站点找到自己想要的物品,并以最低的价格买到.自从淘宝退出百度.建立自己的搜索引擎后,广大消 ...
- Parallel多线程
随着多核时代的到来,并行开发越来越展示出它的强大威力!使用并行程序,充分的利用系统资源,提高程序的性能.在.net 4.0中,微软给我们提供了一个新的命名空间:System.Threading.Tas ...
- Echart的angularjs封装
ehcart是百度做的数据图表,基于原生js.接口和配置都写的很好很易读,还可以用于商用. 下面正题 用原生js的话,引入echarts.js 无论是图表的样式设置,图表渲染,数据填充都是基于echa ...
- android系统将普通应用升级为系统应用
作为一名程序员,有的时候并不是使用软件,而是去改造软件,不仅仅只是会编程而已,还要满足客户的需求.这样,才能开发出符合客户需求的应用,在关于到涉及到android底层的应用的时候,手机就需要root了 ...