题目描述

检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。



上面的布局可以用序列2 4 6 1 3 5来描述,第i个数字表示在第i行的相应位置有一个棋子,如下:

行号 1 2 3 4 5 6

列号 2 4 6 1 3 5

这只是跳棋放置的一个解。请编一个程序找出所有跳棋放置的解。并把它们以上面的序列方法输出。解按字典顺序排列。请输出前3个解。最后一行是解的总个数。

输入输出格式

输入格式:

一个数字N (6 <= N <= 13) 表示棋盘是N x N大小的。

输出格式:

前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。

思路

首先是如何描述题目,可以借助数组的索引为行,对应值为列,如此行必定不会重复,然后对列的可能的值进行全排列(这样行列均不会重复),找出可以满足对角线不平行的组合

经典问题,使用普通的dfs搜索全部路径,也就是搜索到最底层,简单容易理解但是耗时久,优化的思路是到达新的一层直接对新入单位进行判断,满足进入下一层,不满足则结束当前路径

TLE代码(普通dfs,耗时久)

#include<cstdio>
#include<cmath>
using namespace std;
int num = 0;//全排列数字的最大值
int hash[14] = {0};//是否已经选择的标志,0未选,1已选
int nums[14] = {0};//存储需要全排列的数字
int results[14]={0};//搜索过程中记录的全排列的值
int temp =0;//满足条件的个数
void dfs(int depth) {
if (depth == num+1) {
for (int i = 1; i < num; ++i) {
for (int j = i+1; j <= num; ++j) {
if(abs(results[j]-results[i])==abs(j-i)){
return;
}
}
}
if(temp<3){
for (int k = 1; k <= num; ++k) {
printf("%d ",results[k]);
}
printf("\n");
}
temp++;
return;
} for (int j = 1; j <= num; ++j) {
if(hash[j]==0){
results[depth]=nums[j];
hash[j]=1;
dfs(depth+1);
hash[j]=0;
}
}
}
int main() {
scanf("%d",&num);
for (int i = 1; i <= num; ++i) {
nums[i]=i;
}
dfs(1);
printf("%d",temp);
return 0;
}

AC1(回溯dfs)

#include<cstdio>
#include<cmath> using namespace std;
int num = 0;//全排列数字的最大值
int hash[14] = {0};//是否已经选择的标志,0未选,1已选
//int nums[14] = {0};//存储需要全排列的数字,可以不使用
int results[14]={0};//搜索过程中记录的全排列的值
int temp =0;//满足条件的个数
//回溯版本
void dfs(int depth) {
//判断新入的是否满足,不满足直接回退到上一层
//当前深度为depth,数组最大索引为depth-1,而新入的值与前面的值进行比较,所以i < depth-1
for (int i = 1; i < depth - 1; ++i) {
int left = abs(results[depth - 1] - results[i]);
int rigth = abs(depth - 1 - i);
if (left == rigth) {
return;
}
}
//若到达最后这一层,一定是满足的
if (depth == num + 1) {
if(temp<3){
for (int k = 1; k <= num; ++k) {
printf("%d ", results[k]);
}
printf("\n");
}
temp++;
return;
}
//下一层的入口
for (int j = 1; j <= num; ++j) {
if (hash[j] == 0) {
//results[depth] = nums[j];等价
results[depth] = j;
hash[j] = 1;
dfs(depth + 1);
hash[j] = 0;
}
}
}
int main() {
scanf("%d", &num);
// for (int i = 1; i <= num; ++i) {
// nums[i] = i;
// }
dfs(1);
printf("%d", temp);
return 0;
}

稍微优化(更直观)

#include<cstdio>
#include<cmath>
using namespace std;
int num = 0;
int hash[14] = {0};
int results[14] = {-1};
int ans = 0;
//回溯版本
void dfs(int depth) {
if (depth == num + 1) {
if(ans<3){
for (int k = 1; k <= num; ++k) {
printf("%d ", results[k]);
}
printf("\n");
}
ans++;
return;
}
for (int j = 1; j <= num; ++j) {
bool flag = true;
if (hash[j] == 0) {
//回溯,不能取最后一个
for (int i = 1; i < depth ; ++i) {
// |y1 - y2| = |x1 - x2|
if (abs(j - results[i]) == abs(depth - i)) {
flag = false;
break;
}
}
if(flag){
results[depth] = j;
hash[j] = 1;
dfs(depth + 1);
hash[j] = 0;
}
}
}
}
int main() {
scanf("%d", &num);
dfs(1);
printf("%d", ans);
return 0;
}

学到的点

1 回溯是dfs的一种优化方式

2 理解dfs的关键在于理解栈的调用,(形象化的比喻搜索的过程,就是一层一层执行函数)

搜索--P1219 N皇后的更多相关文章

  1. 洛谷 P1219 八皇后【经典DFS,温习搜索】

    P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...

  2. 搜索6--noi1700:八皇后问题

    搜索6--noi1700:八皇后问题 一.心得 二.题目 1756:八皇后 查看 提交 统计 提问 总时间限制:  1000ms 内存限制:  65536kB 描述 会下国际象棋的人都很清楚:皇后可以 ...

  3. 搜索5--noi1700:八皇后问题

    搜索5--noi1700:八皇后问题 一.心得 二.题目 1700:八皇后问题 查看 提交 统计 提问 总时间限制:  10000ms 内存限制:  65536kB 描述 在国际象棋棋盘上放置八个皇后 ...

  4. P1219 N皇后

    P1219 N皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...

  5. 洛谷 P1219八皇后

    把全部,在这251秒,赌上! ——<游戏人生zero> 题目:https://www.luogu.org/problem/P1219 八皇后是一道非常非常非常经典的深搜+回溯的题目. 这道 ...

  6. 【搜索】P1219 八皇后

    题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...

  7. 洛谷 p1219 八皇后

    刚参加完蓝桥杯 弱鸡错了好几道..回头一看确实不难 写起来还是挺慢的 于是开始了刷题的道路 蓝桥杯又名搜索杯 暴力杯...于是先从dfs刷起 八皇后是很经典的dfs问题 洛谷的这道题是这样的 上面的布 ...

  8. P1219 八皇后 含优化 1/5

    题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...

  9. luogu p1219 八皇后

    https://www.luogu.org/problem/show?pid=1219 经典问题,搜索一遍过. 重点是判断皇后能否在map[x][y]放下的条件 因为是dfs的时候过程中 x 是递增的 ...

随机推荐

  1. UVA-10163 Storage Keepers DP

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  2. 【Android】Android输入子系统【转】

    本文转载自:https://www.cnblogs.com/lcw/p/3506110.html Linux输入子系统回顾 1:为什么要回顾linux输入子系统?这个问题后面自然就知道了 1.linu ...

  3. 【转】Material Design 折叠效果 Toolbar CollapsingToolbarLayout AppBarLayout

    我非常喜欢Material Design里折叠工具栏的效果,bilibili Android客户端视频详情页就是采用的这种设计.这篇文章的第二部分我们就通过简单的模仿bilibili视频详情页的实现来 ...

  4. memcached知识点梳理

    Memcached概念:    Memcached是一个免费开源的,高性能的,具有分布式对象的缓存系统,它可以用来保存一些经常存取的对象或数据,保存的数据像一张巨大的HASH表,该表以Key-valu ...

  5. vue seo

    最近在实习,刚来没几天,老大没安排什么大事给我,昨天下午说给我一个小任务,要求如下: 1.收集几个流量大的网站(必须是vue做的)页面交互和逻辑尽可能复杂多样2.对比一下各个页面的seo是如何做的3. ...

  6. UnicodeEncodeError: ‘ascii’ codec can’t encode character u’\u8888′ in position 0: ordinal not in range(168)

    python保存文件UnicodeEncodeError以及reload(sys)后print失效问题 在将字符串写入文件时,执行f.write(str),后台总是报错:UnicodeEncodeEr ...

  7. [NOI2004]cashier 郁闷的出纳员

    Description OIER公司是一家大型专业化软件公司,有着数以万计的员工.作为一名出纳员,我的任务之一便是统计每位员工的工资.这本来是一份不错的工作,但是令人郁闷的是,我们的老板反复无常,经常 ...

  8. 题解报告:poj 2386 Lake Counting(dfs求最大连通块的个数)

    Description Due to recent rains, water has pooled in various places in Farmer John's field, which is ...

  9. c/c++导出lua绑定

    [转载]https://note.youdao.com/share/?id=0f4132271151c4b62f9afb712e8304d9&type=note#/ 1.在纯C环境下,把C函数 ...

  10. 网上商城 Incorrect datetime value: '' for column 'ordertime' at row 1

    今天在做商城项目的[提交订单]功能的时候,向数据库插入数据报错:Incorrect datetime value: '' for column 'ordertime' at row 1 public ...