Ural1099 Work Scheduling 一般图的最大匹配
给定无向图, 求最大匹配。
在寻找增广路的过程中,可能出现一个奇环,这时候把奇环收缩,成为一朵“花”,并在新图上继续增广。
为了记录匹配关系,需要在花中寻找路径,每一条增广路径都可以通过把“花”展开还原回去(因为一个奇环上的两段路径必然一奇一偶)
给出代码,,理解不了就当模版吧 类似的算法还有朱刘算法
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<queue>
#include<cstring>
using namespace std;
const int maxn=250,maxe=250*250*2;
bool g[maxn][maxn],inq[maxn],inflower[maxn];
int match[maxn],pre[maxn],color[maxn];
deque<int>Q;
int findlca(int u,int v)
{
memset(inq,0,sizeof(inq));
while(1)
{
u=color[u];
inq[u]=true;
if(match[u]==-1)break;
u=pre[match[u]];
}
while(1)
{
v=color[v];
if(inq[v])return v;
v=pre[match[v]];
}
}
void reset(int u,int lca)//以“花魁”为root重新设置路径
{
while(u!=lca)
{
int v=match[u];
inflower[color[u]]=inflower[color[v]]=true;
v=pre[v];
if(color[v]!=lca)pre[v]=match[u];
u=v;
}
}
void contract (int u,int v,int n)
{
int lca=findlca(u,v);
memset(inflower,0,sizeof(inflower));
reset(u,lca);reset(v,lca);
if(color[u]!=lca)pre[u]=v;
if(color[v]!=lca)pre[v]=u;
for(int i=1;i<=n;i++)
{
if(inflower[color[i]])
{
color[i]=lca;
if(!inq[i])
{
Q.push_back(i);
inq[i]=1;
}
}
}
}
bool dfs(int S,int n)
{
for(int i=0;i<=n;i++)pre[i]=-1,inq[i]=0,color[i]=i;
Q.clear();Q.push_back(S);inq[S]=1;
while(!Q.empty())
{
int u=Q.front();Q.pop_front();
for(int v=1;v<=n;v++)
{
if(g[u][v]&&color[v]!=color[u]&&match[u]!=v)
{
if(v==S||(match[v]!=-1&&pre[match[v]]!=-1))
contract(u,v,n);
else if(pre[v]==-1)
{
pre[v]=u;
if(match[v]!=-1)Q.push_back(match[v]),inq[match[v]]=1;
else
{
u=v;
while(u!=-1)
{
v=pre[u];
int w=match[v];
match[u]=v;
match[v]=u;
u=w;
}
return true;
}
}
}
}
}
return false;
}
int main()
{
int n,m,a,b,ans,i;
while(scanf("%d",&n)!=EOF)
{
ans=0;
memset(match,-1,sizeof(match));
memset(g,0,sizeof(g));
while(scanf("%d%d",&a,&b)!=EOF&&a!=0)
{
g[a][b]=g[b][a]=1;
}
for(i=1;i<=n;i++)
{
if(match[i]==-1&&dfs(i,n))
{
ans++;
}
}
cout<<ans*2<<endl;
for(i=1;i<=n;i++)
if(match[i]!=-1)
{
printf("%d %d\n",i,match[i]);
match[i]=match[match[i]]=-1;
}
}
return 0;
}
Ural1099 Work Scheduling 一般图的最大匹配的更多相关文章
- URAL1099 Work Scheduling —— 一般图匹配带花树
题目链接:https://vjudge.net/problem/URAL-1099 1099. Work Scheduling Time limit: 0.5 secondMemory limit: ...
- URAL 1099 Work scheduling 一般图的最大匹配 带花树算法(模板)
R - Work scheduling Time Limit:500MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u ...
- URAL 1099 Work Scheduling (一般图最大匹配) 模板题【带花树】
<题目链接> <转载于 >>> > 题目大意: 给出n个士兵,再给出多组士兵之间两两可以匹配的关系.已知某个士兵最多只能与一个士兵匹配.求最多能够有多少对匹 ...
- URAL1099. Work Scheduling(一般图匹配带花树开花算法)
1099. Work Scheduling Time limit: 0.5 second Memory limit: 64 MB There is certain amount of night gu ...
- POJ 2226 缩点建图+二分图最大匹配
这个最小覆盖但不同于 POJ 3041,只有横或者竖方向连通的点能用一块板子覆盖,非连续的,就要用多块 所以用类似并查集方法,分别横向与竖向缩点,有交集的地方就连通,再走一遍最大匹配即可 一开始还有点 ...
- [转]带花树,Edmonds's matching algorithm,一般图最大匹配
看了两篇博客,觉得写得不错,便收藏之.. 首先是第一篇,转自某Final牛 带花树……其实这个算法很容易理解,但是实现起来非常奇葩(至少对我而言). 除了wiki和amber的程序我找到的资料看着都不 ...
- 【Learning】带花树——一般图最大匹配
一般图最大匹配--带花树 问题 给定一个图,求该图的最大匹配.即找到最多的边,使得每个点至多属于一条边. 这个问题的退化版本就是二分图最大匹配. 由于二分图中不存在奇环,偶环对最大匹配并无 ...
- 【learning】一般图最大匹配——带花树
问题描述 对于一个图\(G(V,E)\),当点对集\(S\)满足任意\((u,v)\in S\),均有\(u,v\in V,(u,v)\in E\),且\(S\)中没有点重复出现,我们称\(S\) ...
- "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)
博文“二分图的最大匹配.完美匹配和匈牙利算法”对二分图相关的几个概念讲的特别形象,特别容易理解.本文介绍部分主要摘自此博文. 还有其他可参考博文: 趣写算法系列之--匈牙利算法 用于二分图匹配的匈牙利 ...
随机推荐
- socketserver模块使用方法
一.socketserver模块介绍 Python提供了两个基本的socket模块.一个是socket,它提供了标准的BSD Socket API: 另一个是socketserver,它提供了服务器中 ...
- rbac组件之角色操作(二)
为了与stark组件分离,形成独立的模块,所以rbac数据表的操作需要单独进行操作,对角色表的操作. urls.py urlpatterns = [ re_path(r'^roles/list/$', ...
- sql server 备份计划
SSMS 1.管理 2.维护计划 3.维护计划向导 或者 1. server 代理 2. 作业 3. 新建作业 备份计划时间尽量选在闲时, 例如午夜
- 如何在matlab里安装libsvm包
有时我们需要用到SVR(支持向量回归)方法,而 matlab 自带的svm工具箱不能做回归分析,于是有了安装libsvm包的打算. 中间遇到一些困难,比如找不到编译器等等,经过一下午和一晚上的努力,在 ...
- IOC&DI
[概述] 1.IOC(Inversion of Control): 即“反转控制”,不是什么技术,而是一种设计思想.其思想是反转资源获取的方向. 传统的资源查找方式要求组件向容器发起请求查找资源.作为 ...
- jmeter接口测试实战简例
1.接口需求文档说明 2.打开jmeter,新建线程组,线程组里面默认配置就可以 3.建立http请求,我这里是http请求,所以我选择这个,跟进实际情况 4.post请求说明,post直接加参数和参 ...
- xtu Shortest Path
Acceteped : 23 Submit : 61 Time Limit : 5000 MS Memory Limit : 65536 KB Description 题目描述 N(3≤N≤1 ...
- hihoCoder#1114 小Hi小Ho的惊天大作战:扫雷·一
原题地址 回溯+搜索 枚举每个位置上能否放地雷,当第i个位置枚举完成后,第i-1个位置的情况就确定了,此时,检查第i-1个位置是否满足要求,即左右间隔为1的范围内地雷数是否等于申明数字,如果满足条件, ...
- 【ZJOI2017 Round1练习】D8T2 sequence(DP)
题意: 思路: #include <algorithm> #include <iostream> #include <cstring> #include <c ...
- 组队训练1 回放(转载至cxhscst2's blog)
第一场组队训练……意料之中的爆炸. 开场先看题,H是斐波那契水题,qw把H切了. 同时czy看I题(排列),cst继续读其他题. czy尝试交I,PE. cst发现K是水题. cst上来敲K,WA ...