poj——1330 Nearest Common Ancestors
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 30082 | Accepted: 15386 |
Description
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.
For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.
Write a program that finds the nearest common ancestor of two distinct nodes in a tree.
Input
Output
Sample Input
2 16 1 14 8 5 10 16 5 9 4 6 8 4 4 10 1 13 6 15 10 11 6 7 10 2 16 3 8 1 16 12 16 7 5 2 3 3 4 3 1 1 5 3 5
Sample Output
4 3
Source
#include<cstdio>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 10100
using namespace std;
vector<int>vec[N];
int x,y,n,t,root;
];
int read()
{
,f=; char ch=getchar();
; ch=getchar();}
+ch-'; ch=getchar();}
return x*f;
}
int dfs(int x)
{
deep[x]=deep[fa[x][]]+;
;fa[x][i];i++)
fa[x][i+]=fa[fa[x][i]][i];
;i<vec[x].size();i++)
if(!deep[vec[x][i]])
fa[vec[x][i]][]=x,dfs(vec[x][i]);
}
int lca(int x,int y)
{
if(deep[x]>deep[y]) swap(x,y);
;i>=;i--)
if(deep[fa[y][i]]>=deep[x])
y=fa[y][i];
if(x==y) return x;
;i>=;i--)
if(fa[x][i]!=fa[y][i])
x=fa[x][i],y=fa[y][i];
];
}
void begin()
{
;i<=N;i++)
vec[i].clear();
memset(fa,,sizeof(fa));
memset(dad,,sizeof(dad));
memset(deep,,sizeof(deep));
}
int main()
{
t=read();
while(t--)
{
n=read();begin();
;i<n;i++)
{
x=read(),y=read();
dad[y]=x;
vec[x].push_back(y);
vec[y].push_back(x);
}
;i<=n;i++)
if(!dad[i]) root=i;
deep[root]=;
dfs(root);
x=read(),y=read();
printf("%d\n",lca(x,y));
}
;
}
poj——1330 Nearest Common Ancestors的更多相关文章
- POJ - 1330 Nearest Common Ancestors(基础LCA)
POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %l ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- POJ.1330 Nearest Common Ancestors (LCA 倍增)
POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...
- LCA POJ 1330 Nearest Common Ancestors
POJ 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24209 ...
- POJ 1330 Nearest Common Ancestors(lca)
POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...
- POJ 1330 Nearest Common Ancestors 倍增算法的LCA
POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...
- POJ 1330 Nearest Common Ancestors 【LCA模板题】
任意门:http://poj.org/problem?id=1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000 ...
- POJ 1330 Nearest Common Ancestors (LCA,dfs+ST在线算法)
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14902 Accept ...
- POJ 1330 Nearest Common Ancestors(Targin求LCA)
传送门 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 26612 Ac ...
- [最近公共祖先] POJ 1330 Nearest Common Ancestors
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 27316 Accept ...
随机推荐
- 经典矩阵dp寻找递增最大长度
竖向寻找矩阵最大递增元素长度,因为要求至少一列为递增数列,那么每行求一下最大值就可以作为len[i]:到i行截止的最长的递增数列长度. C. Alyona and Spreadsheet time l ...
- Laravel5.1学习笔记21 EloquentORM 集合
Eloquent: Collections Introduction Available Methods Custom Collections Introduction All multi-resul ...
- 后台管理进程GameMaster
初步准备在后台加一个进程,用来控制进程中的各种数据,修改,查看,删除玩家数据类似于后端的gm控制平台
- Farseer.net轻量级开源框架 入门篇:删除数据详解
导航 目 录:Farseer.net轻量级开源框架 目录 上一篇:Farseer.net轻量级开源框架 入门篇: 修改数据详解 下一篇:Farseer.net轻量级开源框架 入门篇: 查询数据详解 ...
- Window提高_3.1练习_双进程守护
双进程守护 当打开一个进程A的时候,此进程检测是否存在进程B,如果不存在就创建进程B. 进程B的作用是检测进程A是否被关闭,如果被关闭了,就再创建一个进程A. 双进程守护A.exe代码如下: #inc ...
- 如何在linux使用nmap端口扫描工具扫描网段内开放的端口
在另一个linux主机上,使用nmap命令即可 ,比如 我在1.1.1.2上开放了端口1111 -A -j ACCEPT 在1.1.1.1上执行 即可查到
- Python之IO编程
前言:由于程序和运行数据是在内存中驻留的,由CPU这个超快的计算核心来执行.当涉及到数据交换的地方,通常是磁盘.网络等,就需要IO接口.由于CPU和内存的速度远远高于外设的速度,那么在IO编程中就存在 ...
- returnValue of Chrome
说实话,我一看到这个returnValue就有点反感,感觉这个就是IE式的老套的用法,因为项目中有用到就了解了下,以下主要是一些我的理解和发现吧. PS:returnValue是window的属性,s ...
- HTML5大数据可视化效果(一)彩虹爆炸图
前言 25年过去了,Brooks博士著名的“没有银弹”的论断依旧没有被打破.HTML5也是一样.但这并不妨碍HTML5是一个越来越有威力的“炸蛋”:发展迅速.势不可挡.随着HTML5技术的普及,用HT ...
- PS切图基本操作
PS切图基本操作 2016-05-11 20:56:46| 分类: PhotoShop|字号 订阅 下载LOFTER我的照片书 | 1首先在“文件”中打开一张图片. 2点击“移 ...