POJ3685 Matrix —— 二分
题目链接:http://poj.org/problem?id=3685
| Time Limit: 6000MS | Memory Limit: 65536K | |
| Total Submissions: 7378 | Accepted: 2187 |
Description
Given a N × N matrix A, whose element in the i-th row and j-th column Aij is an number that equals i2 + 100000 × i + j2 - 100000 × j + i × j, you are to find the M-th smallest element in the matrix.
Input
The first line of input is the number of test case.
For each test case there is only one line contains two integers, N(1 ≤ N ≤ 50,000) and M(1 ≤ M ≤ N × N). There is a blank line before each test case.
Output
For each test case output the answer on a single line.
Sample Input
12 1 1 2 1 2 2 2 3 2 4 3 1 3 2 3 8 3 9 5 1 5 25 5 10
Sample Output
3
-99993
3
12
100007
-199987
-99993
100019
200013
-399969
400031
-99939
Source
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 1e3+; LL n, m; bool test(LL tmp)
{
LL sum = ;
for(LL i = ; i<=n; i++) //枚举i。当i已确定时, 剩下的式子就是关于j的一元二次方程。求解两个根。
{
LL a = , b = i-, c = 1LL*i*i+1LL*i*-tmp;
if(1LL*b*b-4LL*a*c<) continue; //无实数根时, 下一个i
LL x1 = max( 1LL, (LL)ceil((-b-sqrt(1LL*b*b-4LL*a*c))/(*a)) ); //左根向上取整,最小只能为1。
LL x2 = min( 1LL*n, (LL)floor((-b+sqrt(1LL*b*b-4LL*a*c))/(*a)) ); //右根向下取整,最大只能为n
sum += max( 0LL, x2-x1+ ); //区间内有多少个整数
}
return sum>=m;
} int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%lld%lld", &n, &m);
LL l = -2e10, r = 2e10;
while(l<=r) //二分答案
{
LL mid = (l+r)>>;
if(test(mid))
r = mid - ;
else
l = mid + ;
}
printf("%lld\n", l);
}
}
错误代码:(求最大的数,使得小于它的数的个数<m。为题目所求的上一个数)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 1e3+; LL n, m; bool test(LL tmp)
{
LL sum = ;
for(LL i = ; i<=n; i++) //枚举i。当i已确定时, 剩下的式子就是关于j的一元二次方程。求解两个根。
{
LL a = , b = i-, c = 1LL*i*i+1LL*i*-tmp;
if(1LL*b*b-4LL*a*c<=) continue;
LL x1 = max( 1LL, (LL)ceil((-b-sqrt(1LL*b*b-4LL*a*c))/(*a)) ); //左根向上取整,最小只能为1。
LL x2 = min( 1LL*n, (LL)floor((-b+sqrt(1LL*b*b-4LL*a*c))/(*a)) ); //右根向下取整,最大只能为n
sum += max( 0LL, x2-x1+ ); //区间内有多少个整数
}
return sum<m;
} int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%lld%lld", &n, &m);
LL l = -2e10, r = 2e10;
while(l<=r) //二分答案
{
LL mid = (l+r)>>;
if(test(mid))
l = mid + ;
else
r = mid - ;
}
printf("%lld\n", r);
}
}
POJ3685 Matrix —— 二分的更多相关文章
- POJ3685 Matrix(嵌套二分)
同行元素递减,同列元素递增,采用嵌套二分的方法 #include<cstdio> #include<iostream> #include<cstdlib> #inc ...
- Codeforces 549H. Degenerate Matrix 二分
二分绝对值,推断是否存在对应的矩阵 H. Degenerate Matrix time limit per test 1 second memory limit per test 256 megaby ...
- POJ 3685 Matrix 二分 函数单调性 难度:2
Memory Limit: 65536K Total Submissions: 4637 Accepted: 1180 Description Given a N × N matrix A, ...
- POJ 3685 Matrix (二分套二分)
Matrix Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 8674 Accepted: 2634 Descriptio ...
- Matrix (二分套二分
Given a N × N matrix A, whose element in the i-th row and j-th column Aij is an number that equals i ...
- poj 3685 Matrix 二分套二分 经典题型
Matrix Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 5724 Accepted: 1606 Descriptio ...
- POJ 3685:Matrix 二分
Matrix Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 5489 Accepted: 1511 Descriptio ...
- 74. Search a 2D Matrix(二分查找,剑指offer 1)
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...
- hdu 2119 Matrix(二分匹配)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2119 Matrix Time Limit: 5000/1000 MS (Java/Others) ...
随机推荐
- DelegatingActionProxy
使用 DelegatingActionProxy 使用 DelegatingRequestProcesso 非常简单方便,但有一个缺点:RequestProcessor 是Struts 的一个扩展点, ...
- asp.net mvc 页面内容呈现Html.Raw HtmlString
asp.net mvc 页面内容呈现Html.Raw Html.Raw内容经过页面呈现,不呈现Html标签 @Html.Raw( File.ReadAllText(Server.MapPath(&qu ...
- 征途(bzoj 4518)
Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜 ...
- 蜥蜴 BZOJ 1066
蜥蜴 [问题描述] 在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外. 每行每列中相邻石柱的距离为1,蜥蜴的跳跃距离是d,即蜥蜴可以跳到平面距 ...
- Python入门--11--自定义函数
使用def定义自定义函数 举个栗子: def myfristFunction(): print "we are 伐木累!" #输入myfristFunction() 会输出:we ...
- Redis数据结构之链表
Redis使用的链表是双向无环链表,链表节点可用于保存各种不同类型的值. 一.链表结构定义1. 链表节点结构定义: 2. 链表结构定义: 示例: 二.链表在Redis中的用途1. 作为列表键的底层实现 ...
- golang log日志
写入日志文件 func main() { file, err := os.Create("test.log") if err != nil { log.Fatalln(" ...
- codeforces 1041 e 构造
Codeforces 1041 E 构造题. 给出一种操作,对于一棵树,去掉它的一条边.那么这颗树被分成两个部分,两个部分的分别的最大值就是这次操作的答案. 现在给出一棵树所有操作的结果,问能不能构造 ...
- 多语言业务错误日志收集监控工具Sentry 安装与使用
Sentry 是一个实时事件日志记录和汇集的平台.其专注于错误监控以及提取一切事后处理所需信息而不依赖于麻烦的用户反馈. Sentry是一个日志平台, 它分为客户端和服务端,客户端(目前客户端有Pyt ...
- SELinux 服务检查与关闭
查看SELinux状态: 1./usr/sbin/sestatus -v ##如果SELinux status参数为enabled即为开启状态 SELinux status: ...