【bzoj4008】[HNOI2015]亚瑟王

2015年4月22日3,2991

Description

小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。

他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂
亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。作为一个非
洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值。但他已
经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一
下当欧洲人是怎样的体验。
本题中我们将考虑游戏的一个简化版模型。
玩家有一套卡牌,共 n张。游戏时,玩家将 n 张卡牌排列成某种顺序,排列后
将卡牌按从前往后依次编号为 1 ~  n。本题中,顺序已经确定,即为输入的顺序。
每张卡牌都有一个技能。第 i 张卡牌的技能发动概率为 pi,如果成功发动,则会对
敌方造成di点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因
素以及小K非洲血统的考虑,pi不会为 0,也不会为 1,即 0 < pi < 1。
一局游戏一共有 r 轮。在每一轮中,系统将从第一张卡牌开始,按照顺序依次
考虑每张卡牌。在一轮中,对于依次考虑的每一张卡牌:
1如果这张卡牌在这一局游戏中已经发动过技能,则
1.1 如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌);
否则(是最后一张),结束这一轮游戏。
2否则(这张卡牌在这一局游戏中没有发动过技能),设这张卡牌为第 i 张
2.1将其以 pi的概率发动技能。
2.2如果技能发动,则对敌方造成 di点伤害,并结束这一轮。
2.3如果这张卡牌已经是最后一张(即 i 等于n),则结束这一轮;否则,
考虑下一张卡牌。
请帮助小 K 求出这一套卡牌在一局游戏中能造成的伤害的期望值。

Input

输入文件的第一行包含一个整数 T,代表测试数据组数。

接下来一共 T 组数据。
每组数据的第一行包含两个用空格分开的整数 n和r,分别代表卡牌的张数和
游戏的轮数。
接下来 n行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌。第
i 行的两个数为 pi和 di,分别代表第 i 张卡牌技能发动的概率(实数)和技能发动
造成的伤害(整数)。保证 pi最多包含 4位小数,且为一个合法的概率。

Output

对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的

伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过
10^-8时——即|a-o|/a<=10-8时(其中a是标准答案,o是输出),你的输出才会被判为正确。
建议输出10 位小数。

Sample Input

1
3 2
0.5000 2
0.3000 3
0.9000 1

Sample Output

3.2660250000

HINT

一共有 13 种可能的情况:

1.  第一轮中,第 1张卡牌发动技能;第二轮中,第 2张卡牌发动技能;
概率为 0.15,伤害为5。
2.  第一轮中,第 1张卡牌发动技能;第二轮中,第 3张卡牌发动技能;
概率为 0.315,伤害为3。
3.  第一轮中,第 1张卡牌发动技能;第二轮不发动技能;
概率为 0.035,伤害为2。
4.  第一轮中,第 2张卡牌发动技能;第二轮中,第 1张卡牌发动技能;
概率为 0.075,伤害为5。
5.  第一轮中,第 2张卡牌发动技能;第二轮中,第 3张卡牌发动技能;
概率为 0.0675,伤害为4。
6.  第一轮中,第 2张卡牌发动技能;第二轮不发动技能;
概率为 0.0075,伤害为3。
7.  第一轮中,第 3张卡牌发动技能;第二轮中,第 1张卡牌发动技能;
概率为 0.1575,伤害为3。
8.  第一轮中,第 3张卡牌发动技能;第二轮中,第 2张卡牌发动技能;
概率为 0.04725,伤害为4。
9.  第一轮中,第 3张卡牌发动技能;第二轮不发动技能;
概率为 0.11025,伤害为1。
10.  第一轮不发动技能;第二轮中,第 1张卡牌发动技能;
概率为 0.0175,伤害为2。
11.  第一轮不发动技能;第二轮中,第 2张卡牌发动技能;
概率为 0.00525,伤害为3。
12.  第一轮不发动技能;第二轮中,第 3张卡牌发动技能;
概率为 0.011025,伤害为1。
13.  第一轮不发动技能;第二轮亦不发动技能;
概率为 0.001225,伤害为0。
造成伤害的期望值为概率与对应伤害乘积之和,为 3.266025。
对于所有测试数据, 1 <= T <= 444, 1 <= n <= 220, 0 <= r <= 132, 0 < pi < 1, 0 <= di <= 1000。
除非备注中有特殊说明,数据中 pi与di均为随机生成。
请注意可能存在的实数精度问题,并采取适当措施。
 
题意貌似挺长的,但是懒懒的我还是直接写题解吧,

因为对于每张牌,会影响到他的概率的只有他前面的牌,他后面的牌是否抽中对他没有影响

Fi,jFi,j表示前i张牌,还有j轮未打出牌的概率
考虑第i+1张牌,它可能在剩下的j轮中的某1轮被打出,也可能j轮都没打出
从前往后转移
没什么问题吧。
 #include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstring>
#define N 307
using namespace std; int n,r,d[N];
double p[N],f[N][N],pw[N][N];
int main()
{
int cas;
scanf("%d",&cas);
while(cas--)
{
scanf("%d%d",&n,&r);
memset(f,,sizeof(f));
for (int i=;i<=n;i++)
scanf("%lf%d",&p[i],&d[i]);
double ans=;
for (int i=;i<=n;i++)
{
pw[i][]=;
for (int j=;j<=r;j++)
pw[i][j]=pw[i][j-]*(-p[i]);
}
f[][r]=;
for (int i=;i<n;i++)
for (int j=;j<=r;j++)
{
f[i+][j]+=f[i][j]*pw[i+][j];
if (j->=)
{
f[i+][j-]+=f[i][j]*(-pw[i+][j]);
ans+=f[i][j]*(-pw[i+][j])*d[i+];
}
}
printf("%.10lf\n",ans);
}
}
 
 

bzoj[HNOI2015]亚瑟王 - 递推与动规 - 概率与期望的更多相关文章

  1. BZOJ [HNOI2015]亚瑟王 ——期望DP

    发现每张卡牌最后起到作用只和是否打出去了有关. 而且每张牌打出去的概率和之前的牌打出去的情况有关. 所以我们按照牌的顺序进行DP. 然后记录$i$张牌中打出$j$张的概率,然后顺便统计答案. 直接对系 ...

  2. 【bzoj1042】[HAOI2008]硬币购物-递推与动规-容斥原理

    硬币购物 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一行 c1,c2 ...

  3. [SCOI2008]奖励关 - 状压动规 - 概率与期望

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝 ...

  4. BZOJ 4008: [HNOI2015]亚瑟王( dp )

    dp(i, j)表示考虑了前i张牌, 然后还有j轮的概率. 考虑第i+1张牌: 发动的概率 : p = dp(i, j) * (1 - (1-p[i+1])^j) 没发动的概率 : dp(i, j) ...

  5. 【BZOJ4008】[HNOI2015]亚瑟王(动态规划)

    [BZOJ4008][HNOI2015]亚瑟王(动态规划) 题面 BZOJ 洛谷 题解 设\(f[i][j]\)表示前\(i\)张卡中有\(j\)张被触发的概率. 分两种情况转移,即当前这张是否被触发 ...

  6. 【BZOJ4008】[HNOI2015]亚瑟王

    [BZOJ4008][HNOI2015]亚瑟王 题面 bzoj 洛谷 题解 由期望的线性性 可以知道,把所有牌打出的概率乘上它的伤害加起来就是答案 记第$i$张牌打出的概率为$fp[i]$ 则 $$ ...

  7. 【BZOJ4008】[HNOI2015]亚瑟王 期望

    [BZOJ4008][HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最 ...

  8. [洛谷 P3239] [HNOI2015]亚瑟王

    [HNOI2015]亚瑟王 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知, ...

  9. 4008: [HNOI2015]亚瑟王

    4008: [HNOI2015]亚瑟王 链接 分析: 根据期望的线性性,直接求出每张牌出现的概率,最后乘以攻击力就是答案. 每张牌出现的概率只与它前面的牌有关,与后面的没有关系,于是按顺序考虑每张牌. ...

随机推荐

  1. Webpack的使用指南-Webpack小结

    参考文章: https://baijiahao.baidu.com/s?id=1594972657801970108&wfr=spider&for=pc 使用Webpack有一段时间了 ...

  2. CPP-基础:关于多态

        类的多态特性是支持面向对象的语言最主要的特性,有过非面向对象语言开发经历的人,通常对这一章节的内容会觉得不习惯,因为很多人错误的认为,支持类的封装的语言就是支持面向对象的,其实不然,Visua ...

  3. Active Directory网域

    Active Directory网域 3.1Windows网络的管理方式 3.1.1工作组模式 工作组由一组用网络连接在一起的计算机组成,他们将计算机内的资源共享给用户访问.工作组网络也被称为“对等式 ...

  4. MySQL 实时监控日志

    简单的梳理一下为什么要写这边文章,主要是学了ORM之后,发现通过ORM插入数据真的很方便,但是通过ORM生成的SQL语句又是怎么写的呢,百思不得姐.于是就找到了这个办法 首先查看一下查看MySQL 日 ...

  5. spring源码学习之容器的基本实现

    最近想拿出一部分时间来学习一下spring的源码,还特意买了一本书结合来看,当然主要是学习并跟着作者的思路来踏上学习spring的源码的道路,特意在此记录一下,<spring源码深度解析> ...

  6. Js自学学习-笔记6-8

    <!-- 第6-7课笔记 --> <!-- for循环 for(条件1:判断:变化)其实就是if嵌套 while do for循环简化版 可以用do while swith case ...

  7. javascript 写一个随机范围整数的思路

    const {random} = Math; //返回 [min,max] 的随机值 //[0,1) * (max - min + 1) => [0,max-min+1) //[0,max-mi ...

  8. CF-1027-B. Curiosity Has No Limits

    CF-1027-B. Curiosity Has No Limits http://codeforces.com/contest/1072/problem/B 题意: 给定两组序列a,b,长度为n-1 ...

  9. 【模拟】bzoj1686: [Usaco2005 Open]Waves 波纹

    打完模拟题来庆祝一波:):感觉最近陷入一种“口胡五分钟打题两小时”的巨坑之中…… Description Input     第1行:四个用空格隔开的整数Pj Bi,B2,R. P(1≤P≤5)表示石 ...

  10. 初涉倍增&&LCA【在更】

    一种特殊的枚举算法 什么是倍增 顾名思义,即每一次翻倍增加.那么,这样我们就有了一种$O(logn)$阶的方法处理枚举方面的问题了. 参考:[白话系列]倍增算法 一些题目 [倍增]luoguP1613 ...