【bzoj4008】[HNOI2015]亚瑟王

2015年4月22日3,2991

Description

小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。

他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂
亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。作为一个非
洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值。但他已
经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一
下当欧洲人是怎样的体验。
本题中我们将考虑游戏的一个简化版模型。
玩家有一套卡牌,共 n张。游戏时,玩家将 n 张卡牌排列成某种顺序,排列后
将卡牌按从前往后依次编号为 1 ~  n。本题中,顺序已经确定,即为输入的顺序。
每张卡牌都有一个技能。第 i 张卡牌的技能发动概率为 pi,如果成功发动,则会对
敌方造成di点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因
素以及小K非洲血统的考虑,pi不会为 0,也不会为 1,即 0 < pi < 1。
一局游戏一共有 r 轮。在每一轮中,系统将从第一张卡牌开始,按照顺序依次
考虑每张卡牌。在一轮中,对于依次考虑的每一张卡牌:
1如果这张卡牌在这一局游戏中已经发动过技能,则
1.1 如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌);
否则(是最后一张),结束这一轮游戏。
2否则(这张卡牌在这一局游戏中没有发动过技能),设这张卡牌为第 i 张
2.1将其以 pi的概率发动技能。
2.2如果技能发动,则对敌方造成 di点伤害,并结束这一轮。
2.3如果这张卡牌已经是最后一张(即 i 等于n),则结束这一轮;否则,
考虑下一张卡牌。
请帮助小 K 求出这一套卡牌在一局游戏中能造成的伤害的期望值。

Input

输入文件的第一行包含一个整数 T,代表测试数据组数。

接下来一共 T 组数据。
每组数据的第一行包含两个用空格分开的整数 n和r,分别代表卡牌的张数和
游戏的轮数。
接下来 n行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌。第
i 行的两个数为 pi和 di,分别代表第 i 张卡牌技能发动的概率(实数)和技能发动
造成的伤害(整数)。保证 pi最多包含 4位小数,且为一个合法的概率。

Output

对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的

伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过
10^-8时——即|a-o|/a<=10-8时(其中a是标准答案,o是输出),你的输出才会被判为正确。
建议输出10 位小数。

Sample Input

1
3 2
0.5000 2
0.3000 3
0.9000 1

Sample Output

3.2660250000

HINT

一共有 13 种可能的情况:

1.  第一轮中,第 1张卡牌发动技能;第二轮中,第 2张卡牌发动技能;
概率为 0.15,伤害为5。
2.  第一轮中,第 1张卡牌发动技能;第二轮中,第 3张卡牌发动技能;
概率为 0.315,伤害为3。
3.  第一轮中,第 1张卡牌发动技能;第二轮不发动技能;
概率为 0.035,伤害为2。
4.  第一轮中,第 2张卡牌发动技能;第二轮中,第 1张卡牌发动技能;
概率为 0.075,伤害为5。
5.  第一轮中,第 2张卡牌发动技能;第二轮中,第 3张卡牌发动技能;
概率为 0.0675,伤害为4。
6.  第一轮中,第 2张卡牌发动技能;第二轮不发动技能;
概率为 0.0075,伤害为3。
7.  第一轮中,第 3张卡牌发动技能;第二轮中,第 1张卡牌发动技能;
概率为 0.1575,伤害为3。
8.  第一轮中,第 3张卡牌发动技能;第二轮中,第 2张卡牌发动技能;
概率为 0.04725,伤害为4。
9.  第一轮中,第 3张卡牌发动技能;第二轮不发动技能;
概率为 0.11025,伤害为1。
10.  第一轮不发动技能;第二轮中,第 1张卡牌发动技能;
概率为 0.0175,伤害为2。
11.  第一轮不发动技能;第二轮中,第 2张卡牌发动技能;
概率为 0.00525,伤害为3。
12.  第一轮不发动技能;第二轮中,第 3张卡牌发动技能;
概率为 0.011025,伤害为1。
13.  第一轮不发动技能;第二轮亦不发动技能;
概率为 0.001225,伤害为0。
造成伤害的期望值为概率与对应伤害乘积之和,为 3.266025。
对于所有测试数据, 1 <= T <= 444, 1 <= n <= 220, 0 <= r <= 132, 0 < pi < 1, 0 <= di <= 1000。
除非备注中有特殊说明,数据中 pi与di均为随机生成。
请注意可能存在的实数精度问题,并采取适当措施。
 
题意貌似挺长的,但是懒懒的我还是直接写题解吧,

因为对于每张牌,会影响到他的概率的只有他前面的牌,他后面的牌是否抽中对他没有影响

Fi,jFi,j表示前i张牌,还有j轮未打出牌的概率
考虑第i+1张牌,它可能在剩下的j轮中的某1轮被打出,也可能j轮都没打出
从前往后转移
没什么问题吧。
 #include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstring>
#define N 307
using namespace std; int n,r,d[N];
double p[N],f[N][N],pw[N][N];
int main()
{
int cas;
scanf("%d",&cas);
while(cas--)
{
scanf("%d%d",&n,&r);
memset(f,,sizeof(f));
for (int i=;i<=n;i++)
scanf("%lf%d",&p[i],&d[i]);
double ans=;
for (int i=;i<=n;i++)
{
pw[i][]=;
for (int j=;j<=r;j++)
pw[i][j]=pw[i][j-]*(-p[i]);
}
f[][r]=;
for (int i=;i<n;i++)
for (int j=;j<=r;j++)
{
f[i+][j]+=f[i][j]*pw[i+][j];
if (j->=)
{
f[i+][j-]+=f[i][j]*(-pw[i+][j]);
ans+=f[i][j]*(-pw[i+][j])*d[i+];
}
}
printf("%.10lf\n",ans);
}
}
 
 

bzoj[HNOI2015]亚瑟王 - 递推与动规 - 概率与期望的更多相关文章

  1. BZOJ [HNOI2015]亚瑟王 ——期望DP

    发现每张卡牌最后起到作用只和是否打出去了有关. 而且每张牌打出去的概率和之前的牌打出去的情况有关. 所以我们按照牌的顺序进行DP. 然后记录$i$张牌中打出$j$张的概率,然后顺便统计答案. 直接对系 ...

  2. 【bzoj1042】[HAOI2008]硬币购物-递推与动规-容斥原理

    硬币购物 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一行 c1,c2 ...

  3. [SCOI2008]奖励关 - 状压动规 - 概率与期望

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝 ...

  4. BZOJ 4008: [HNOI2015]亚瑟王( dp )

    dp(i, j)表示考虑了前i张牌, 然后还有j轮的概率. 考虑第i+1张牌: 发动的概率 : p = dp(i, j) * (1 - (1-p[i+1])^j) 没发动的概率 : dp(i, j) ...

  5. 【BZOJ4008】[HNOI2015]亚瑟王(动态规划)

    [BZOJ4008][HNOI2015]亚瑟王(动态规划) 题面 BZOJ 洛谷 题解 设\(f[i][j]\)表示前\(i\)张卡中有\(j\)张被触发的概率. 分两种情况转移,即当前这张是否被触发 ...

  6. 【BZOJ4008】[HNOI2015]亚瑟王

    [BZOJ4008][HNOI2015]亚瑟王 题面 bzoj 洛谷 题解 由期望的线性性 可以知道,把所有牌打出的概率乘上它的伤害加起来就是答案 记第$i$张牌打出的概率为$fp[i]$ 则 $$ ...

  7. 【BZOJ4008】[HNOI2015]亚瑟王 期望

    [BZOJ4008][HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最 ...

  8. [洛谷 P3239] [HNOI2015]亚瑟王

    [HNOI2015]亚瑟王 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知, ...

  9. 4008: [HNOI2015]亚瑟王

    4008: [HNOI2015]亚瑟王 链接 分析: 根据期望的线性性,直接求出每张牌出现的概率,最后乘以攻击力就是答案. 每张牌出现的概率只与它前面的牌有关,与后面的没有关系,于是按顺序考虑每张牌. ...

随机推荐

  1. 玄学C语言之scanf,printf

    #include <bits/stdc++.h> using namespace std; int main() { int a,c,d; ]; scanf("%d." ...

  2. 2018 北京区域赛 I - Palindromes (找规律)

    题目 HihoCoder - 1878 题目大意 给出k,让求出第k个回文数(k的“长度”不超过1e5) 题解 之前做过类似的题,是统计各阶段的数找到第K个回文数,但这里K太大,需要寻找新的方法. 打 ...

  3. c++ 计算彩票中奖概率

    操作方法: 输入两个数字,第一个数字是备选总数,第二个数字是选择总数,然后返回中将概率. 可以投注多次,结束的时候返回总的中将概率. #include <iostream> using n ...

  4. css3如何实现click后页面过渡滚动到顶部

    var getTop = document.getElementById("get-top"); var head = document.getElementById(" ...

  5. perl学习之子程序

    一.定义子程序即执行一个特殊任务的一段分离的代码,它可以使减少重复代码且使程序易读.PERL中,子程序可以出现在程序的任何地方.定义方法为:sub subroutine{statements;}二.调 ...

  6. python爬虫基础04-网页解析库xpath

    更简单高效的HTML数据提取-Xpath 本文地址:https://www.jianshu.com/p/90e4b83575e2 XPath 是一门在 XML 文档中查找信息的语言.XPath 用于在 ...

  7. FastJson生成json时,显示Null属性

    FastJson生成json时,默认不会输出null字段. 移动端,有时候,需要后端提供完整的字段说明. Map < String , Object > jsonMap = new Has ...

  8. 织梦dedecms自定义表单设置必填项

    1. 用php验证 在plus/diy.php的第 40行下加 //增加必填字段判断 if($required!=''){ if(preg_match('/,/', $required)) { $re ...

  9. Java-替换字符串中的子字符串

    自顶一个repace方法 package com.tj; public class MyClass implements Cloneable { public static void main(Str ...

  10. loj2253 「SNOI2017」礼物

    对于一个在位置 \(i\) 的数,他等于 \(i^k+sum_{1,k-1}\). 二项式定理推 \(i^k\),矩阵快速幂即可. #include <iostream> #include ...