[Violet]蒲公英
description
在线询问区间众数。
data range
\]
solution
自己分块不行于是\(\%\)了\(yyb\)一发
神仙题。
发现众数只可能为块的众数或者剩下的数
于是离散化后维护块\([l,r]\)的众树和每个树的权值分布
对于剩下的数直接在\(vector\)上二分查询即可
Code
#include<bits/stdc++.h>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<complex>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<ctime>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define Cpy(x,y) memcpy(x,y,sizeof(x))
#define Set(x,y) memset(x,y,sizeof(x))
#define FILE "2724"
#define mp make_pair
#define pb push_back
#define RG register
#define il inline
using namespace std;
typedef unsigned long long ull;
typedef vector<int>VI;
typedef long long ll;
typedef double dd;
const int N=40010;
const int M=10000010;
const dd eps=1e-5;
const int inf=2147483647;
const ll INF=1ll<<60;
const ll P=100000;
il ll read(){
RG ll data=0,w=1;RG char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch<='9'&&ch>='0')data=data*10+ch-48,ch=getchar();
return data*w;
}
il void file(){
srand(time(NULL)+rand());
freopen(FILE".in","r",stdin);
freopen(FILE".out","w",stdout);
}
int n,m,blk,Q,a[N],b[N],o[N],len,s[302][302],ans,t[N];
vector<int>p[N];
il int query(int l,int r,int x){
if(!p[x].size())return 0;
return upper_bound(p[x].begin(),p[x].end(),r)-lower_bound(p[x].begin(),p[x].end(),l);
}
int main()
{
n=read();Q=read();m=150;blk=(n-1)/m+1;
for(RG int i=1;i<=n;i++){o[i]=a[i]=read();b[i]=(i-1)/m+1;}
sort(o+1,o+n+1);len=unique(o+1,o+n+1)-o-1;
for(RG int i=1;i<=n;i++){
a[i]=lower_bound(o+1,o+len+1,a[i])-o;
p[a[i]].push_back(i);
}
for(RG int i=1,ret;i<=blk;i++){
memset(t,0,sizeof(t));ret=0;
for(RG int j=i;j<=blk;j++){
for(RG int k=(j-1)*m+1;k<=n&&k<=j*m;k++){
t[a[k]]++;
if(t[ret]<t[a[k]]||(t[ret]==t[a[k]]&&a[k]<ret))
ret=a[k];
}
s[i][j]=ret;
}
}
while(Q--){
RG int l=(read()+ans-1)%n+1,r=(read()+ans-1)%n+1,cnt;
if(l>r)swap(l,r);
if(b[l]==b[r]){
ans=0;
for(RG int i=l;i<=r;i++)t[a[i]]=0;
for(RG int i=l;i<=r;i++){
t[a[i]]++;
if(t[ans]<t[a[i]]||(t[ans]==t[a[i]]&&a[i]<ans))
ans=a[i];
}
}
else{
ans=s[b[l]+1][b[r]-1];if(ans)cnt=query(l,r,ans);else cnt=0;
for(RG int i=l,ret;i==l||i%m!=1;i++){
ret=query(l,r,a[i]);
if(ret>cnt||(ret==cnt&&a[i]<ans))
ans=a[i],cnt=ret;
}
for(RG int i=r,ret;i==r||i%m!=0;i--){
ret=query(l,r,a[i]);
if(ret>cnt||(ret==cnt&&a[i]<ans))
ans=a[i],cnt=ret;
}
}
ans=o[ans];printf("%d\n",ans);
}
return 0;
}
[Violet]蒲公英的更多相关文章
- 洛谷 P4168 [Violet]蒲公英 解题报告
P4168 [Violet]蒲公英 题目背景 亲爱的哥哥: 你在那个城市里面过得好吗? 我在家里面最近很开心呢.昨天晚上奶奶给我讲了那个叫「绝望」的大坏蛋的故事的说!它把人们的房子和田地搞坏,还有好多 ...
- 【luogu1468】[Violet]蒲公英--求区间众数
题目背景 亲爱的哥哥: 你在那个城市里面过得好吗? 我在家里面最近很开心呢.昨天晚上奶奶给我讲了那个叫「绝望」的大坏蛋的故事的说!它把人们的房子和田地搞坏,还有好多小朋友也被它杀掉了.我觉得把那么可怕 ...
- [Violet]蒲公英 分块
发现写算法专题老是写不动,,,, 所以就先把我在luogu上的题解搬过来吧! 题目大意:查询区间众数,无修改,强制在线 乍一看是一道恐怖的题,仔细一看发现并没有那么难: 大致思路是这样的,首先我们要充 ...
- P4168 [Violet]蒲公英 区间众数
$ \color{#0066ff}{ 题目描述 }$ 在乡下的小路旁种着许多蒲公英,而我们的问题正是与这些蒲公英有关. 为了简化起见,我们把所有的蒲公英看成一个长度为n的序列 \((a_1,a_2.. ...
- 洛谷 P4168 [Violet] 蒲公英
历尽千辛万苦终于AC了这道题目... 我们考虑1个区间\([l,r]\), 被其完整包含的块的区间为\([L,R]\) 那么众数的来源? 1.\([l,L)\)或\((R,r]\)中出现的数字 2.\ ...
- P4168 [Violet]蒲公英
神仙分块题?其实还是很简单的,res[i][j]表示第i块到第j块的众数,然后再用sum[i][j]表示前i块中j这个种类出现的次数,然后分块瞎搞就行了,感觉我写的十分简洁,好评( //author ...
- BZOJ2724 [Violet]蒲公英(分块)
区间众数.分块,预处理任意两块间所有数的众数,和每块中所有数的出现次数的前缀和.查询时对不是整块的部分暴力,显然只有这里出现的数可能更新答案.于是可以优美地做到O(n√n). #include< ...
- p4168 [Violet]蒲公英(分块)
区间众数的重题 和数列分块入门9双倍经验还是挺好的 然后开O2水过 好像有不带log的写法啊 之后在补就是咕咕咕 // luogu-judger-enable-o2 #include <cstd ...
- BZOJ2724 [Violet]蒲公英 分块
题目描述 经典区间众数题目 然而是权限题,所以题目链接放Luogu的 题解 因为太菜所以只会$O(n*\sqrt{n}+n*\sqrt{n}*log(n))$的做法 就是那种要用二分的,并不会clj那 ...
随机推荐
- Java开发工程师(Web方向) - 02.Servlet技术 - 第3章.Servlet应用
第3章.Servlet应用 转发与重定向 转发:浏览器发送资源请求到ServletA后,ServletA传递请求给ServletB,ServletB生成响应后返回给浏览器. 请求转发:forward: ...
- 逆波兰表达式[栈 C 语言 实现]
逆波兰表达式 逆波兰表达式又叫做后缀表达式.在通常的表达式中,二元运算符总是置于与之相关的两个运算对象之间,这种表示法也称为中缀表示.波兰逻辑学家J.Lukasiewicz于1929年提出了另一种表示 ...
- JavaScript 常用正则示例
1. trim功能(清除字符串两端空格) String.prototype.trim = function() { return this.replace(/(^\s+)|(\s+$)/g, '') ...
- 中文乱码的处理—@北河的ppt
- 《Git学习指南》学习笔记(二)
第三章 提交究竟是什么 每次提交都会生成一个40位的散列值.只要知道散列值,我们就可以恢复到该次提交,这个操作也被称之为检出(checkout)操作. 访问权限与时间戳 Git会保存每个文件原有的访问 ...
- 孤荷凌寒自学python第七十八天开始写Python的第一个爬虫8
孤荷凌寒自学python第七十八天开始写Python的第一个爬虫8 (完整学习过程屏幕记录视频地址在文末) 今天在上一天的基础上继续完成对我的第一个代码程序的书写. 到今天止基本完成了对docx模块针 ...
- Hbase restFul API
获取hbase版本 curl -vi -X GET -H "Accept: text/xml" http://10.8.4.46:20550/version/cluster1.2. ...
- html常用小知识
请求重定向:加载页面之后,除了用js做重定向之外,我们还可以直接用<meta>标签做重定向. <meta http-equiv="refresh" content ...
- C++clock()延时循环
函数clock(),返回程序开始执行后所用的系统时间,但是有两个复制问题. 1.clock()返回时间的单位不一定是秒 2.该函数的返回类型在某些系统上可能是Long,也可能是unsigned lon ...
- ThinkPHP - 1 - 本地部署
ThinkPHP ThinkPHP是一个快速.简单的基于MVC和面向对象的轻量级PHP开发框架,遵循Apache2开源协议发布,从诞生以来一直秉承简洁实用的设计原则,在保持出色的性能和至简的代码的同时 ...