最小生成树,克鲁斯卡尔算法.

算法简述:

  将每个顶点看成一个图.

  在所有图中找权值最小的边.将这条边的两个图连成一个图,

  重复上一步.直到只剩一个图.

注:将abcdef每个顶点看成一个图.将最小权值的边的两个图连接.

连接最小权值为1的两个图,这时a-c,b,d,e,f.

连接最小权值为2的两个图,这时a-c,b,d-f,e.

连接最小权值为3的两个图,这时a-c,b-e,d-f.

连接最小权值为4的两个图,这时a-c-f-d,b-e.(c-f)

连接最小权值为5的两个图,这时a-c-b-e-f-d.(b-c)

结束.

根据上述操作,我们需要一个存储边信息的数组(Edge结构体),Edge包含了边的两个节点和权值.

 typedef struct
{
int head;//边的始点下标
int tail;//边的终点下标
int power;//边的权值
} Edge;

还需要一个visited数组,用来标识图中的节点信息.

算法操作:

  初始化一棵树(用来保存最小生成树,直接输出也行.)

  将图中所有边复制到一个数组中,将数组排序(递增顺序)

  将小边的两个顶点连接.将两个图合并成一个图.

  重复上一步.

临街矩阵的代码实现

代码中,ijk做循环用,v1,v2做边的两个顶点信息的下标,vs1,vs2做标识v1和v2所属图

1-27行,初始化visited,edge,kruskal_tree等信息.

29-44行,生成一棵最小生成树.

35行,if是为了防止回路,vs1和vs2标识一个这两点是否属于一个图.

38行,for是为了将visited数组中vs2边成vs1,因为这时,v1和v2已经在一个图里了.

 void kruskal(Graph * graph, Graph * kruskal_tree)
{
int visited[graph->vertexs];
Edge edge[graph->brim];
int i, j, k;
int v1, v2, vs1, vs2; for ( i = ; i < graph->vertexs; i++ )
visited[i] = i; k = ;
for ( i = ; i < graph->vertexs; i++ )
{
for ( j = i + ; j < graph->vertexs; j++ )
{
if ( graph->arcs[i][j] != MAX_VALUE )
{
edge[k].head = i;
edge[k].tail = j;
edge[k].power = graph->arcs[i][j];
k++;
}
}
} init_kruskal(graph, kruskal_tree);
my_sort(edge, graph->brim); for ( i = ; i < graph->brim; i++ )
{
v1 = edge[i].head;
v2 = edge[i].tail;
vs1 = visited[v1];
vs2 = visited[v2];
if ( vs1 != vs2 )
{
kruskal_tree->arcs[v1][v2] = graph->arcs[v1][v2];
for ( j = ; j < graph->vertexs; j++ )
{
if ( visited[j] == vs2 )
visited[j] = vs1;
}
}
}
}

临街矩阵源码:http://www.cnblogs.com/ITgaozy/p/5200637.html

邻接表的代码实现

17行,if是为了将防止边的重复输入(在邻接矩阵中,点在矩阵中是对称的,所以我们只输入一个上三角中的数据就够了.但在邻接表中,我们如何判断一条边是否已经输入过了? 我的方法是将比当前节点下标大的输入,例如右a,b两个节点,a的节点小与b,我们在输入b的信息时,由于a的节点下标比b小,不输入a-b这条边,因为我们在输入a的信息时,a-b这条边已经输入过了.

 void kruskal(Graph * graph, Graph * kruskal_tree)
{
int visited[graph->vertexs];
int i, j;
Edge edge[graph->brim];
int v1, v2, vs1, vs2;
Arc_node * cur, * tmp; for ( i = ; i < graph->vertexs; i++ )
visited[i] = i; for ( i = , j = ; i < graph->vertexs; i++ )
{
cur = graph->adjlist[i].next;
while ( cur != NULL )
{
if ( cur->pos > i )
{
edge[j].head = i;
edge[j].tail = cur->pos;
edge[j].power = cur->distance;
j++;
}
cur = cur->next;
}
} init_kruskal(graph, kruskal_tree);
my_sort(edge, graph->brim); for ( i = ; i < graph->brim; i += )
{
v1 = edge[i].head;
v2 = edge[i].tail;
vs1 = visited[v1];
vs2 = visited[v2];
if ( vs1 != vs2 )
{
if ( kruskal_tree->adjlist[v1].next == NULL )
{
kruskal_tree->adjlist[v1].next = make_node(v2, edge[i].power);
}
else
{
tmp = kruskal_tree->adjlist[v1].next;
while ( tmp->next != NULL )
tmp = tmp->next;
tmp->next = make_node(v2, edge[i].power);
}
for ( j = ; j < graph->vertexs; j++ )
{
if ( visited[j] == vs2 )
visited[j] = vs1;
}
}
}
}

邻接表源码:http://www.cnblogs.com/ITgaozy/p/5200643.html

最小生成树Kruskal算法(邻接矩阵和邻接表)的更多相关文章

  1. hdoj 2063 过山车【匈牙利算法+邻接矩阵or邻接表】

    过山车 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  2. 【转】最小生成树——Kruskal算法

    [转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...

  3. PAT1013. Battle Over Cities(邻接矩阵、邻接表分别dfs)

    //采用不同的图存储结构结构邻接矩阵.邻接表分别dfs,我想我是寂寞了吧,应该试试并查集,看见可以用并查集的就用dfs,bfs代替......怕了并查集了 //邻接矩阵dfs #include< ...

  4. 图的存储结构:邻接矩阵(邻接表)&链式前向星

    [概念]疏松图&稠密图: 疏松图指,点连接的边不多的图,反之(点连接的边多)则为稠密图. Tips:邻接矩阵与邻接表相比,疏松图多用邻接表,稠密图多用邻接矩阵. 邻接矩阵: 开一个二维数组gr ...

  5. 最小生成树Prim算法(邻接矩阵和邻接表)

    最小生成树,普利姆算法. 简述算法: 先初始化一棵只有一个顶点的树,以这一顶点开始,找到它的最小权值,将这条边上的令一个顶点添加到树中 再从这棵树中的所有顶点中找到一个最小权值(而且权值的另一顶点不属 ...

  6. 求最小生成树——Kruskal算法

    给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这篇文章先介绍Kruskal算法. Kruskal算法的基本思想:先将所有边按权值从小到大排序,然后按顺 ...

  7. 数据结构之最小生成树Kruskal算法

    1. 克鲁斯卡算法介绍 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法. 基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路. 具体做法:首先构造一个 ...

  8. 最小生成树——Kruskal算法理解

    背景:本文是在小甲鱼数据结构教学视频中的代码的基础上,添加详细注释而完成的.该段代码并不完整,仅摘录了核心算法部分,结合自己的思考,谈谈理解. Prim算法理解: 如图(摘录自小甲鱼教学视频中的图片) ...

  9. 图的存储结构(邻接矩阵与邻接表)及其C++实现

    一.图的定义 图是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为: G=(V,E) 其中:G表示一个图,V是图G中顶点的集合,E是图G中顶点之间边的集合. 注: 在线性表中,元素个数可以为零, ...

随机推荐

  1. solr searcher

    solr searcher 前面我配置好了solr,并且数据库建立索引也完成了. 为php添加搜索 首先下载solrphp http://wiki.apache.org/solr/SolPHP 在so ...

  2. HTML5本地存储之localStorage、sessionStorage

    1.概述 localStorage和sessionStorage统称为Web Storage,它使得网页可以在浏览器端储存数据. sessionStorage保存的数据用于浏览器的一次会话,当会话结束 ...

  3. 使用 SyndicationFeed 输出 Rss

    以前生成 RSS 都是使用拼接 Xml 的方式生成的,不仅麻烦而且还不规范. #region 输出指定分类编号的消息源内容... /// <summary> /// 输出指定分类编号的消息 ...

  4. POJ 2234 Matches Game

    Matches Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7567   Accepted: 4327 Desc ...

  5. [原]如何在Android用FFmpeg+SDL2.0解码图像线程

    关于如何在Android上用FFmpeg+SDL2.0解码显示图像参考[原]如何在Android用FFmpeg+SDL2.0解码显示图像 ,关于如何在Android使用FFmpeg+SDL2.0解码声 ...

  6. wndbg下载与安装

    wndbg分X86和X64两个版本 如果你的程序是32位的,就下载安装X86的版本:如果你的程序是64位,就下载X64版本. x86位版本下载:[微软官方安装版] x64位版本下载:[微软官方安装版]

  7. java面试欠缺知识点总结

    针对最近面试被问到的问题,总结自己欠缺的知识点,并要在接下来的1年内加强这些知识: Java方面:反射.线程concurrent包: Spring方面:Ioc和Aop.事务: 持久化框架:设计并实现分 ...

  8. 【NS2仿真】UDP协议

    # # cbr # \ # udp sink # \ / # n0--------5M 2ms---------n1 # # set ns [new Simulator] set f [open ou ...

  9. SNF开发平台WinForm之十一-程序打包-SNF快速开发平台3.3-Spring.Net.Framework

    原来我们用的是微软自带的打包工具去打包,但感觉好像也是第三方做的打包并且很是麻烦,还有时不成功报错.那综合考虑就找一个简单实用的打包工具吧,就找到了NSIS这个.具体打包步骤如下: 1.安装NSIS ...

  10. MyBatis知多少(11)企业数据库

    企业数据库比应用程序数据库更大,其外部影响也更大.它们与其他系统之间存在更多的关系,包括依赖关系和被依赖关系.这些关系可能是Web应用程序与报表工具之间的,但也很有可 能是与其他的复杂系统和数据库的接 ...