BAIndividual.py

 import numpy as np
import ObjFunction class BAIndividual: '''
individual of bat algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for bat algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
self.velocity = np.random.random(size=len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)

BA.py

 import numpy as np
from BAIndividual import BAIndividual
import random
import copy
import matplotlib.pyplot as plt class BatAlgorithm: '''
the class for bat algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
params: algorithm required parameters, it is a list which is consisting of[fmax, fmin, Amax, Amin, alpha, gamma]
'''
self.sizepop = sizepop
self.vardim = vardim
self.bound = bound
self.MAXGEN = MAXGEN
self.params = params
self.population = []
self.fitness = np.zeros(self.sizepop)
self.freq = np.zeros(self.sizepop)
self.loudness = np.zeros(self.sizepop)
self.emissionrate = np.zeros(self.sizepop)
self.initEmissionrate = np.zeros(self.sizepop)
self.trace = np.zeros((self.MAXGEN, 2)) def initialize(self):
'''
initialize the population of ba
'''
for i in xrange(0, self.sizepop):
ind = BAIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind)
self.freq[i] = self.params[1] + \
(self.params[0] - self.params[1]) * np.random.random(1)
self.loudness[i] = self.params[3] + \
(self.params[2] - self.params[3]) * np.random.random(1)
self.initEmissionrate[i] = np.random.random(1)
self.emissionrate[i] = self.initEmissionrate[i] def evaluation(self):
'''
evaluation the fitness of the population
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
the evolution process of the bat algorithm
'''
self.t = 0
self.initialize()
self.evaluation()
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
while self.t < self.MAXGEN:
self.t += 1
self.update()
# idx = self.select()
self.evaluation()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex]) self.avefitness = np.mean(self.fitness)
self.trace[self.t - 1, 0] = \
(1 - self.best.fitness) / self.best.fitness
self.trace[self.t - 1, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t - 1, 0], self.trace[self.t - 1, 1]))
print("Optimal function value is: %f; " % self.trace[self.t - 1, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def update(self):
'''
update the population
'''
for i in xrange(0, self.sizepop):
self.freq[i] = self.params[1] + \
(self.params[0] - self.params[1]) * np.random.random(1)
self.population[
i].velocity += (self.best.chrom - self.population[i].chrom) * self.freq[i] self.population[i].chrom += self.population[i].velocity
for k in xrange(0, self.vardim):
if self.population[i].chrom[k] < self.bound[0, k]:
self.population[i].chrom[k] = self.bound[0, k]
if self.population[i].chrom[k] > self.bound[1, k]:
self.population[i].chrom[k] = self.bound[1, k]
rnd = np.random.random(1)
A = np.mean(self.emissionrate)
tmpInd = copy.deepcopy(self.best)
if rnd > self.emissionrate[i]:
tmpInd.chrom += np.random.uniform(low=-1,
high=1.0, size=self.vardim) * A
for k in xrange(0, self.vardim):
if tmpInd.chrom[k] < self.bound[0, k]:
tmpInd.chrom[k] = self.bound[0, k]
if tmpInd.chrom[k] > self.bound[1, k]:
tmpInd.chrom[k] = self.bound[1, k]
tmpInd.calculateFitness()
if tmpInd.fitness > self.best.fitness and random.random() < self.loudness[i]:
self.population[i] = tmpInd
self.loudness[i] *= self.params[4]
self.emissionrate[i] = self.initEmissionrate[
i] * (1 - np.exp(self.params[5] * self.t))
if tmpInd.fitness > self.best.fitness:
self.best = copy.deepcopy(tmpInd) def selectOne(self):
'''
select one individual from the population
'''
totalFitness = np.sum(self.fitness)
accuFitness = np.zeros(self.sizepop) sum1 = 0.
for i in xrange(0, self.sizepop):
accuFitness[i] = sum1 + self.fitness[i] / totalFitness
sum1 = accuFitness[i] r = random.random()
idx = 0
for j in xrange(0, self.sizepop - 1):
if j == 0 and r < accuFitness[j]:
idx = 0
break
elif r >= accuFitness[j] and r < accuFitness[j + 1]:
idx = j + 1
break
return idx def printResult(self):
'''
plot the result of bat algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Bat algorithm for function optimization")
plt.legend()
plt.show()

运行程序:

 if __name__ == "__main__":

     bound = np.tile([[-600], [600]], 25)
ba = BA(60, 25, bound, 1000, [1, 0, 1, 0, 0.8, 0.9])
ba.solve()

ObjFunction见简单遗传算法-python实现

蝙蝠算法-python实现的更多相关文章

  1. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  2. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  3. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  4. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  5. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. Codeforces 234D Cinema

    这题做的我好苦啊,编码调试整整搞了一个多小时,而且调到天昏地暗才调出来.. 回归正题,这题是一道本人做过的比较烦,比较无聊的题之一.题意是一个人,在m个影星里有k个喜欢的影星,然后给出n场电影,每场电 ...

  2. [3D跑酷] GameManager

    GameManager在游戏中很重要,处理整个游戏的流程,但是在这个类中尽量也只是写一些重要的方法,调用其它类中的方法. 枚举项 函数列表 方法解释 //当玩家碰到障碍(障碍Type,碰撞Positi ...

  3. MonoDevelop line endings

    文件编码问题 这个让我头疼很久的问题,每次修改文件后,都会出现这个提示框. 解决办法 之前修改 D:\Program Files (x86)\Unity\Editor\Data\Resources\S ...

  4. RecyclerView (一) 基础知识

    RecyclerView是什么? RecyclerView是一种新的视图组,目标是为任何基于适配器的视图提供相似的渲染方式.它被作为ListView和GridView控件的继承者,在最新的suppor ...

  5. Netty开发UDP协议

    UdpServer package org.zln.netty.five.part07; import io.netty.bootstrap.Bootstrap; import io.netty.ch ...

  6. easyui datagrid 多行删除问题

    问题: var selected = $("#tbList").datagrid("getSelections"); selected的选中项 会包含上次已删掉 ...

  7. IBatis.net动态SQL语句

    在学习动态SQL语句之前,首先必须对条件查询有一定了解,先来学习如何向IBatis.Net的映射文件里传入参数. 一.条件查询 1.传递单个参数 如根据Id查询: <select id=&quo ...

  8. JS调试加断点

    js在回调函数执行时直接就跳过了,想看下回调函数也看不了,调试的debug代码一时半会儿想不起来,找了几分钟找到了,还是记一下好. 1 debugger;

  9. NET中MSMQ的使用----附例子

    目录 一:MSMQ的一些理论上的知识 二:队列类型(Queue Type) 三:安装消息队列 四:在C#中Messagequeue class 五:MSMQ-发送消息到远程专用队列 六:例子   一. ...

  10. KnockOutJS步步深入

    由于项目原因,目前需要用到KnockOutJS,找到了一个锻炼Knockout的绝好的网址:http://learn.knockoutjs.com/ 一步一步的按照教程来,可以把KO掌握的八九不离十.