蝙蝠算法-python实现
BAIndividual.py
import numpy as np
import ObjFunction class BAIndividual: '''
individual of bat algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for bat algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
self.velocity = np.random.random(size=len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)
BA.py
import numpy as np
from BAIndividual import BAIndividual
import random
import copy
import matplotlib.pyplot as plt class BatAlgorithm: '''
the class for bat algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
params: algorithm required parameters, it is a list which is consisting of[fmax, fmin, Amax, Amin, alpha, gamma]
'''
self.sizepop = sizepop
self.vardim = vardim
self.bound = bound
self.MAXGEN = MAXGEN
self.params = params
self.population = []
self.fitness = np.zeros(self.sizepop)
self.freq = np.zeros(self.sizepop)
self.loudness = np.zeros(self.sizepop)
self.emissionrate = np.zeros(self.sizepop)
self.initEmissionrate = np.zeros(self.sizepop)
self.trace = np.zeros((self.MAXGEN, 2)) def initialize(self):
'''
initialize the population of ba
'''
for i in xrange(0, self.sizepop):
ind = BAIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind)
self.freq[i] = self.params[1] + \
(self.params[0] - self.params[1]) * np.random.random(1)
self.loudness[i] = self.params[3] + \
(self.params[2] - self.params[3]) * np.random.random(1)
self.initEmissionrate[i] = np.random.random(1)
self.emissionrate[i] = self.initEmissionrate[i] def evaluation(self):
'''
evaluation the fitness of the population
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
the evolution process of the bat algorithm
'''
self.t = 0
self.initialize()
self.evaluation()
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
while self.t < self.MAXGEN:
self.t += 1
self.update()
# idx = self.select()
self.evaluation()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex]) self.avefitness = np.mean(self.fitness)
self.trace[self.t - 1, 0] = \
(1 - self.best.fitness) / self.best.fitness
self.trace[self.t - 1, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t - 1, 0], self.trace[self.t - 1, 1]))
print("Optimal function value is: %f; " % self.trace[self.t - 1, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def update(self):
'''
update the population
'''
for i in xrange(0, self.sizepop):
self.freq[i] = self.params[1] + \
(self.params[0] - self.params[1]) * np.random.random(1)
self.population[
i].velocity += (self.best.chrom - self.population[i].chrom) * self.freq[i] self.population[i].chrom += self.population[i].velocity
for k in xrange(0, self.vardim):
if self.population[i].chrom[k] < self.bound[0, k]:
self.population[i].chrom[k] = self.bound[0, k]
if self.population[i].chrom[k] > self.bound[1, k]:
self.population[i].chrom[k] = self.bound[1, k]
rnd = np.random.random(1)
A = np.mean(self.emissionrate)
tmpInd = copy.deepcopy(self.best)
if rnd > self.emissionrate[i]:
tmpInd.chrom += np.random.uniform(low=-1,
high=1.0, size=self.vardim) * A
for k in xrange(0, self.vardim):
if tmpInd.chrom[k] < self.bound[0, k]:
tmpInd.chrom[k] = self.bound[0, k]
if tmpInd.chrom[k] > self.bound[1, k]:
tmpInd.chrom[k] = self.bound[1, k]
tmpInd.calculateFitness()
if tmpInd.fitness > self.best.fitness and random.random() < self.loudness[i]:
self.population[i] = tmpInd
self.loudness[i] *= self.params[4]
self.emissionrate[i] = self.initEmissionrate[
i] * (1 - np.exp(self.params[5] * self.t))
if tmpInd.fitness > self.best.fitness:
self.best = copy.deepcopy(tmpInd) def selectOne(self):
'''
select one individual from the population
'''
totalFitness = np.sum(self.fitness)
accuFitness = np.zeros(self.sizepop) sum1 = 0.
for i in xrange(0, self.sizepop):
accuFitness[i] = sum1 + self.fitness[i] / totalFitness
sum1 = accuFitness[i] r = random.random()
idx = 0
for j in xrange(0, self.sizepop - 1):
if j == 0 and r < accuFitness[j]:
idx = 0
break
elif r >= accuFitness[j] and r < accuFitness[j + 1]:
idx = j + 1
break
return idx def printResult(self):
'''
plot the result of bat algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Bat algorithm for function optimization")
plt.legend()
plt.show()
运行程序:
 if __name__ == "__main__":
     bound = np.tile([[-600], [600]], 25)
     ba = BA(60, 25, bound, 1000, [1, 0, 1, 0, 0.8, 0.9])
     ba.solve()
ObjFunction见简单遗传算法-python实现。
蝙蝠算法-python实现的更多相关文章
- pageRank算法 python实现
		一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ... 
- 常见排序算法-Python实现
		常见排序算法-Python实现 python 排序 算法 1.二分法 python 32行 right = length- : ] ): test_list = [,,,,,, ... 
- kmp算法python实现
		kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ... 
- KMP算法-Python版
		KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ... 
- 压缩感知重构算法之IRLS算法python实现
		压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ... 
- 压缩感知重构算法之OLS算法python实现
		压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ... 
- 压缩感知重构算法之CoSaMP算法python实现
		压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ... 
- 压缩感知重构算法之IHT算法python实现
		压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ... 
- 压缩感知重构算法之SP算法python实现
		压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ... 
随机推荐
- Codeforces 234D Cinema
			这题做的我好苦啊,编码调试整整搞了一个多小时,而且调到天昏地暗才调出来.. 回归正题,这题是一道本人做过的比较烦,比较无聊的题之一.题意是一个人,在m个影星里有k个喜欢的影星,然后给出n场电影,每场电 ... 
- [3D跑酷] GameManager
			GameManager在游戏中很重要,处理整个游戏的流程,但是在这个类中尽量也只是写一些重要的方法,调用其它类中的方法. 枚举项 函数列表 方法解释 //当玩家碰到障碍(障碍Type,碰撞Positi ... 
- MonoDevelop line endings
			文件编码问题 这个让我头疼很久的问题,每次修改文件后,都会出现这个提示框. 解决办法 之前修改 D:\Program Files (x86)\Unity\Editor\Data\Resources\S ... 
- RecyclerView (一)    基础知识
			RecyclerView是什么? RecyclerView是一种新的视图组,目标是为任何基于适配器的视图提供相似的渲染方式.它被作为ListView和GridView控件的继承者,在最新的suppor ... 
- Netty开发UDP协议
			UdpServer package org.zln.netty.five.part07; import io.netty.bootstrap.Bootstrap; import io.netty.ch ... 
- easyui datagrid 多行删除问题
			问题: var selected = $("#tbList").datagrid("getSelections"); selected的选中项 会包含上次已删掉 ... 
- IBatis.net动态SQL语句
			在学习动态SQL语句之前,首先必须对条件查询有一定了解,先来学习如何向IBatis.Net的映射文件里传入参数. 一.条件查询 1.传递单个参数 如根据Id查询: <select id=&quo ... 
- JS调试加断点
			js在回调函数执行时直接就跳过了,想看下回调函数也看不了,调试的debug代码一时半会儿想不起来,找了几分钟找到了,还是记一下好. 1 debugger; 
- NET中MSMQ的使用----附例子
			目录 一:MSMQ的一些理论上的知识 二:队列类型(Queue Type) 三:安装消息队列 四:在C#中Messagequeue class 五:MSMQ-发送消息到远程专用队列 六:例子 一. ... 
- KnockOutJS步步深入
			由于项目原因,目前需要用到KnockOutJS,找到了一个锻炼Knockout的绝好的网址:http://learn.knockoutjs.com/ 一步一步的按照教程来,可以把KO掌握的八九不离十. 
