Drainage Ditches

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 13273    Accepted Submission(s): 6288

Problem Description
Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.
 
Input
The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.
 
Output
For each case, output a single integer, the maximum rate at which water may emptied from the pond.
 
Sample Input
5 4 1 2 40 1 4 20 2 4 20 2 3 30 3 4 10
 
Sample Output
50
 
 
第一道最大流题目!
 
 #include <iostream>
#include <queue>
#include<string.h>
using namespace std;
#define arraysize 201
int maxData = 0x7fffffff;
int capacity[arraysize][arraysize]; //记录残留网络的容量
int flow[arraysize]; //标记从源点到当前节点实际还剩多少流量可用
int pre[arraysize]; //标记在这条路径上当前节点的前驱,同时标记该节点是否在队列中
int n,m;
queue<int> myqueue;
int BFS(int src,int des)
{
int i,j;
while(!myqueue.empty()) //队列清空
myqueue.pop();
for(i=;i<m+;++i)
{
pre[i]=-;
}
pre[src]=;
flow[src]= maxData;
myqueue.push(src);
while(!myqueue.empty())
{
int index = myqueue.front();
myqueue.pop();
if(index == des) //找到了增广路径
break;
for(i=;i<m+;++i)
{
if(i!=src && capacity[index][i]> && pre[i]==-)
{
pre[i] = index; //记录前驱
flow[i] = min(capacity[index][i],flow[index]); //关键:迭代的找到增量
myqueue.push(i);
}
}
}
if(pre[des]==-) //残留图中不再存在增广路径
return -;
else
return flow[des];
}
int maxFlow(int src,int des)
{
int increasement= ;
int sumflow = ;
while((increasement=BFS(src,des))!=-)
{
int k = des; //利用前驱寻找路径
while(k!=src)
{
int last = pre[k];
capacity[last][k] -= increasement; //改变正向边的容量
capacity[k][last] += increasement; //改变反向边的容量
k = last;
}
sumflow += increasement;
}
return sumflow;
}
int main()
{
int i,j;
int start,end,ci;
while(cin>>n>>m)
{
memset(capacity,,sizeof(capacity));
memset(flow,,sizeof(flow));
for(i=;i<n;++i)
{
cin>>start>>end>>ci;
if(start == end) //考虑起点终点相同的情况
continue;
capacity[start][end] +=ci; //此处注意可能出现多条同一起点终点的情况
}
cout<<maxFlow(,m)<<endl;
}
return ;
}
刘汝佳书上给的邻接表算法
 #include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <queue>
#include <vector>
#include <string.h>
using namespace std;
const int MAX = ;
const int INF = 0x3f3f3f3f;
struct Edge
{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){};
};
int n,m;
vector<Edge> edge;
vector<int> g[MAX];
int a[MAX],p[MAX];
void init()
{
for(int i = ; i <= m; i++)
g[i].clear();
edge.clear();
}
int Maxflow(int s,int t)
{
int flow = ;
while(true)
{
memset(a,,sizeof(a));
queue<int> q;
q.push(s);
a[s] = INF;
while(q.size())
{
int x = q.front();
q.pop();
int len = g[x].size();
for(int i = ; i < len; i++)
{
Edge e = edge[ g[x][i] ];
if(a[e.to] == && e.cap > e.flow)
{
p[e.to] = g[x][i];
a[e.to] = min(a[x],e.cap - e.flow);
q.push(e.to);
}
}
if(a[t])
break;
}
if(a[t] == )
break;
for(int i = t; i != s; i = edge[ p[i] ].from)
{
edge[ p[i] ].flow += a[t];
edge[ p[i] ^ ].flow -= a[t];
}
flow += a[t];
}
return flow;
}
int main()
{
while(scanf("%d%d", &n,&m) != EOF)
{
int s,e,v,t;
init();
for(int i = ; i <= n; i++)
{
scanf("%d%d%d",&s,&e,&v);
edge.push_back(Edge(s,e,v,));
edge.push_back(Edge(e,s,,));
t = edge.size();
g[s].push_back(t - );
g[e].push_back(t - );
} printf("%d\n",Maxflow(,m));
}
}

HD1532Drainage Ditches(最大流模板裸题 + 邻接表)的更多相关文章

  1. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

  2. 三种邻接表存图模板:vector邻接表、数组邻接表、链式前向星

    vector邻接表: ; struct Edge{ int u,v,w; Edge(int _u=0,int _v=0,int _w=0){u=_u,v=_v,w=_w;} }; vector< ...

  3. 算法模板——sap网络最大流 3(递归+邻接表)

    实现功能:同前 程序还是一如既往的优美,虽然比起邻接矩阵的稍稍长了那么些,不过没关系这是必然,但更重要的一个必然是——速度将是一个质的飞跃^_^(这里面的point指针稍作了些创新——anti指针,这 ...

  4. POJ 1273 Drainage Ditches | 最大流模板

    #include<cstdio> #include<algorithm> #include<cstring> #include<queue> #defi ...

  5. 邻接表(C++)

    adj_list_network_edge.h // 邻接表网边数据类模板 template <class WeightType> class AdjListNetworkEdge { p ...

  6. hdu 1532 Drainage Ditches(最大流模板题)

    Drainage Ditches Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  7. poj1273--Drainage Ditches(最大流Edmond-Karp算法 邻接表实现)

    最大流模板题 大部分Edmond-Karp算法代码都是邻接矩阵实现,试着改成了邻接表. #include <iostream> #include <cstdio> #inclu ...

  8. hdu Flow Problem (最大流 裸题)

    最大流裸题,贴下模版 view code#include <iostream> #include <cstdio> #include <cstring> #incl ...

  9. [hdu3549]Flow Problem(最大流模板题)

    解题关键:使用的挑战程序设计竞赛上的模板,第一道网络流题目,效率比较低,且用不习惯的vector来建图. 看到网上其他人说此题有重边,需要注意下,此问题只在邻接矩阵建图时会出问题,邻接表不会存在的,也 ...

随机推荐

  1. WPF好看的进度条实现浅谈(效果有点类似VS2012安装界面)

    为了界面友好,一般的操作时间较长时,都需要增加进度条提示.由于WPF自带的进度条其实不怎么好看,而且没啥视觉效果.后来,装VS2012时,发现安装过程中进度条效果不错,于是上网查了资料.学习了Mode ...

  2. [Elixir009]像GenServer一样用behaviour来规范接口

    1.Behaviour介绍 Erlang/Elixir的Behaviour类似于其它语言中的接口(interfaces),本质就是在指定behaviours的模块中强制要求导出一些指定的函数,否则编译 ...

  3. C语言 数组做函数参数退化为指针的技术推演

    //数组做函数参数退化为指针的技术推演 #include<stdio.h> #include<stdlib.h> #include<string.h> //一维数组 ...

  4. JQuery 中 is(':visible') 解析及用法

    实例 选择 <body> 元素中每个可见的元素: $("body :visible") 亲自试一试 定义和用法 :visible 选择器选取每个当前是可见的元素. 除以 ...

  5. C#委托Action、Action<T>、Func<T>、Predicate<T>

    CLR环境中给我们内置了几个常用委托Action. Action<T>.Func<T>.Predicate<T>,一般我们要用到委托的时候,尽量不要自己再定义一 个 ...

  6. 极简反传(BP)神经网络

    一.两层神经网络(感知机) import numpy as np '''极简两层反传(BP)神经网络''' # 样本 X = np.array([[0,0,1],[0,1,1],[1,0,1],[1, ...

  7. WPF 得到子指定元素方法和得到指定子元素集合方法MvvM得到焦点

    public class UIHelper { /// <summary> /// 在Visual里找到想要的元素 /// childName可为空,不为空就按名字找 /// </s ...

  8. 清除sql server 登录的时候记住的账户

    SQl 2008如何清除登陆过的服务器名称   C:\Users\Administrator\AppData\Roaming\Microsoft\Microsoft SQL Server\100\To ...

  9. libusb(.NET)开源项目使用小结

    更多细节请参考官方帮助文档 1,修改设备类型为自己的标识 InfWizard项目里,改掉资源文件LibUsb-Win32-LUDN.Driver.Resources. 原来的三处libusb-win3 ...

  10. Android中图片大小和屏幕密度的关系讲解

    Android手机适配是非常让人头疼的一件事,尤其是图片,android为了做到是适配提供了很多文件夹来存放不同大小的图片,比如:drawable-ldpi.drawable-mdpi.drawabl ...