ACM Computer Factory
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5596   Accepted: 1922   Special Judge

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j— input specification for part jDi,k — output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1
3 4
15 0 0 0 0 1 0
10 0 0 0 0 1 1
30 0 1 2 1 1 1
3 0 2 1 1 1 1
Sample input 2
3 5
5 0 0 0 0 1 0
100 0 1 0 1 0 1
3 0 1 0 1 1 0
1 1 0 1 1 1 0
300 1 1 2 1 1 1
Sample input 3
2 2
100 0 0 1 0
200 0 1 1 1

Sample Output

Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.

Source

Northeastern Europe 2005, Far-Eastern Subregion
跟poj1459差不多,就是net要自己连上线
dinic 0ms 
 #include<stdio.h>
#include<algorithm>
#include<queue>
#include<string.h>
using namespace std;
const int M = , inf = 0x3f3f3f3f ;
struct edge
{
int u , v , timeu ;
int w ;
}e[M * M * ]; struct node
{
int input[] , output[] ;
int w ;
}o[M]; int p , n ;
int src , des ;
int dis[M] ;
int head[M * M * ] ;
int cnt , app ;
struct ABW
{
int a , b , w ;
}step[M * M * ]; bool bfs ()
{
queue <int> q ;
while (!q.empty ())
q.pop () ;
memset (dis , - , sizeof(dis)) ;
dis[src] = ;
q.push (src) ;
while (!q.empty ()) {
int u = q.front () ;
q.pop () ;
for (int i = head[u] ; i != - ; i = e[i].timeu) {
int v = e[i].v ;
if (dis[v] == - && e[i].w > ) {
dis[v] = dis[u] + ;
q.push (v) ;
}
}
}
if (dis[des] > )
return true ;
return false ;
} int dfs (int u , int low)
{
int a = ;
if (u == des)
return low ;
for (int i = head[u] ; i != - ; i = e[i].timeu) {
int v = e[i].v ;
if (e[i].w > && dis[v] == dis[u] + && (a = dfs (v , min (low , e[i].w)))) {
e[i].w -= a ;
if (e[i].u != src && e[i].v != des) {
step[app].a = e[i].u ; step[app].b = e[i].v ; step[app].w = a ;
app++ ;
}
e[i^].w += a ;
return a ;
}
}
dis[u] = - ;
return ;
} void dinic ()
{
int ans = , res = ;
app = ;
while (bfs ()) {
while () {
if (ans = dfs (src , inf))
res += ans ;
else
break ;
}
}
printf ("%d %d\n" , res , app) ;
for (int i = app - ; i >= ; i--)
printf ("%d %d %d\n" , step[i].a + , step[i].b + , step[i].w) ;
} void addedge (int u , int v)
{
e[cnt].u = u ; e[cnt].v = v ; e[cnt].w = o[u].w == - ? o[v].w : o[u].w ; e[cnt].timeu = head[u] ;
head[u] = cnt++ ;
e[cnt].u = v ; e[cnt].v = u ; e[cnt].w = ; e[cnt].timeu = head[v] ;
head[v] = cnt++ ;
} void binary (int s , int l , int r)
{
if (l == r) {
if (s != l && l != n) {
int i ;
for (i = ; i < p ; i++) {
if (o[l].input[i] != && o[s].output[i] != o[l].input[i])
break ;
}
if (i == p) {
addedge (s , l) ;
}
}
return ;
}
int mid = l + r >> ;
binary (s , l , mid) ;
binary (s , mid + , r) ;
} int main ()
{
// freopen ("a.txt" , "r" , stdin) ;
while (~ scanf ("%d%d" , &p , &n)) {
for (int i = ; i < n ; i++) {
scanf ("%d" , &o[i].w) ;
for (int j = ; j < p ; j++) {
scanf ("%d" , &o[i].input[j]) ;
}
for (int j = ; j < p ; j++) {
scanf ("%d" , &o[i].output[j]) ;
}
}
for (int i = ; i < p ; i++) {
o[n].input[i] = o[n].output[i] = ;//源点
o[n + ].input[i] = o[n + ].output[i] = ;//汇点
}
o[n].w = - , o[n + ].w = - ;
src = n , des = n + ; n += ;
cnt = ;
memset (head , - , sizeof(head)) ;
for (int i = ; i < n - ; i++) {
binary(i , , n) ;
}
/* for (int i = 0 ; i < cnt ; i++) {
if (i % 2 == 0)
printf ("%d-->%d === %d , time: %d\n" , e[i].u , e[i].v , e[i].w , e[i].timeu) ;
}
puts ("") ; */
dinic () ;
}
return ;
}

ACM Computer Factory(dinic)的更多相关文章

  1. POJ-3436:ACM Computer Factory (Dinic最大流)

    题目链接:http://poj.org/problem?id=3436 解题心得: 题目真的是超级复杂,但解出来就是一个网络流,建图稍显复杂.其实提炼出来就是一个工厂n个加工机器,每个机器有一个效率w ...

  2. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  3. POJ3436 ACM Computer Factory(最大流/Dinic)题解

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8944   Accepted: 3 ...

  4. POJ3436:ACM Computer Factory(最大流)

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9963   Accepted: 3 ...

  5. POJ-3436 ACM Computer Factory(网络流EK)

    As you know, all the computers used for ACM contests must be identical, so the participants compete ...

  6. POJ - 3436 ACM Computer Factory(最大流)

    https://vjudge.net/problem/POJ-3436 题目描述:  正如你所知道的,ACM 竞赛中所有竞赛队伍使用的计算机必须是相同的,以保证参赛者在公平的环境下竞争.这就是所有这些 ...

  7. POJ 3436 ACM Computer Factory(最大流+路径输出)

    http://poj.org/problem?id=3436 题意: 每台计算机包含P个部件,当所有这些部件都准备齐全后,计算机就组装完成了.计算机的生产过程通过N台不同的机器来完成,每台机器用它的性 ...

  8. POJ 3436:ACM Computer Factory(最大流记录路径)

    http://poj.org/problem?id=3436 题意:题意很难懂.给出P N.接下来N行代表N个机器,每一行有2*P+1个数字 第一个数代表容量,第2~P+1个数代表输入,第P+2到2* ...

  9. ACM Computer Factory - poj 3436 (最大流)

      Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5949   Accepted: 2053   Special Judge ...

随机推荐

  1. Django1.8教程——安装Django

    本书介绍 你是不是对Django的学习感到迷茫?是不是对网上零星的教程感到绝望?是不是苦于没有可以迅速上手的实例而发愁?如果你同我一样有这些感受,那么<Django.By.Example> ...

  2. 【总结】学习Socket编写的聊天室小程序

    1.前言 在学习Socket之前,先来学习点网络相关的知识吧,自己学习过程中的一些总结,Socket是一门很高深的学问,本文只是Socket一些最基础的东西,大神请自觉绕路. 传输协议 TCP:Tra ...

  3. 一句话概括下spring框架及spring cloud框架主要组件

    作为java的屌丝,基本上跟上spring屌丝的步伐,也就跟上了主流技术.spring 顶级项目:Spring IO platform:用于系统部署,是可集成的,构建现代化应用的版本平台,具体来说当你 ...

  4. Asp.net MVC在View里动态捆绑压缩引用的js

    前言 Asp.net MVC 4以上版本多了BundleConfig.RegisterBundles方法,可以把要捆绑的脚本或样式进行捆绑压缩,以减少客户端的请求次数从而提高了客户端的访问速度. 问题 ...

  5. Bootstrap系列 -- 23. 图片

    图像在网页制作中也是常要用到的元素,在Bootstrap框架中对于图像的样式风格提供以下几种风格: 1.img-responsive:响应式图片,主要针对于响应式设计 2.img-rounded:圆角 ...

  6. 第三十一课:JSDeferred详解2

    这一课,我们先接着上一课讲一下wait方法,以及wait方法是如何从静态方法变化实例方法的. 首先我们先看wait方法为啥可以从静态方法变成实例方法,请看register源码: Deferred.re ...

  7. webstrom 中启用emmet插件的方法

    参考页面:https://www.jetbrains.com/help/webstorm/2016.2/enabling-emmet-support.html Basics Native Emmet ...

  8. poj1308 并查集

    比较恶心 1: 0 0 空树是一棵树 2: 1 1 0 0 不是树 3: 1 2 1 2 0 0 不是树... 4: 1 2 2 3 4 5 不是树 森林不算是树 5: 1 2 2 3 3 4 4 5 ...

  9. Java设计模式-策略模式(strategy)

    策略模式定义了一系列算法,并将每个算法封装起来,使他们可以相互替换,且算法的变化不会影响到使用算法的客户.需要设计一个接口,为一系列实现类提供统一的方法,多个实现类实现该接口,设计一个抽象类(可有可无 ...

  10. 38.Android之ListView简单学习(一)

    android中ListView用的很普遍,今天来学习下,本篇主要以本地数据加载到listview,后面会学习从网络获取数据添加到listview. 首先改下布局文件: <?xml versio ...