Noip2018Day1T3 赛道修建
problem
给出一棵有边权的树。一条链的权值定义为该链所经过的边的边权值和。需要选出\(m\)条链,求\(m\)条链中权值最小的链的权值最大是多少。
solution
首先显然二分。
然后考虑如何判断二分出来的一个答案\(x\)是否是可行的。也就是能否选出\(m\)条链,每条链权值都大于等于\(x\)。这个其实是贪心。
定义直链为从一个某个点的祖先到该点的路径。
可以发现每条链要么就是一条直链,要么由两条直链在某个点处合并起来得到。
贪心的地方在于,对于每个点肯定都是优先将能合成的直链合成。然后再保证向上传递的直链长度最大。因为即便向上传递的长度特别大,产生的贡献也做多只能是\(1\)。所以要先保证在当前子树上合成最多的链。
然后问题就变成了在一棵子树内得到一些直链长度。现在把这些直链两两合并成权值大于等于\(x\)的链。然后保证剩下的直链长度最大。
这里可以二分答案一下。也可以用个\(multiset\)处理。反正是很可做的一个问题。
代码中有各档部分分,BF5为正解
code
#include<set>
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<ctime>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std;
typedef long long ll;
const int N = 100010;
ll read() {
ll x = 0,f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
int n,m;
struct node {
int v,nxt,w;
}e[N << 1];
int head[N],ejs;
void add(int u,int v,int w) {
e[++ejs].v = v;e[ejs].nxt = head[u];head[u] = ejs;e[ejs].w = w;
}
namespace BF1 {
int dis[N];
void dfs(int u,int fa) {
for(int i = head[u];i;i = e[i].nxt) {
int v = e[i].v;
if(v == fa) continue;
dis[v] = dis[u] + e[i].w;
dfs(v,u);
}
}
void main() {
dfs(1,0);
int x = 0;
for(int i = 1;i <= n;++i) if(dis[i] > dis[x]) x = i;
// cout<<x<<endl;
memset(dis,0,sizeof(dis));
dfs(x,0);
int ans = 0;
for(int i = 1;i <= n;++i) ans = max(ans,dis[i]);
cout<<ans;
}
}
namespace BF2 {
int a[N],cnt;
int check(int x) {
int p = 1,ret = 0;
for(int i = cnt;i > p;--i) {
if(a[i] > x && i > p) {ret++;continue;}
while(a[p] + a[i] < x && p < i) ++p;
if(p < i) ret++,p++;
else break;
}
return ret;
}
void main() {
int l = 100000,r = 0;
for(int i = 1;i <= ejs;i += 2) a[++cnt] = e[i].w,l = min(l,a[cnt]),r += a[cnt];
sort(a + 1,a + cnt + 1);
int ans = 0;
while(l <= r) {
int mid = (l + r) >> 1;
if(check(mid) >= m) ans = mid,l = mid + 1;
else r = mid - 1;
}
cout<<ans<<endl;
}
}
int du[N];
namespace BF3 {
int a[N],cnt;
void dfs(int u,int fa) {
for(int i = head[u];i;i = e[i].nxt) {
int v = e[i].v;
if(v == fa) continue;
a[++cnt] = e[i].w;
dfs(v,u);
}
}
int check(int x) {
int now = 0,ret = 0;
for(int i = 1;i <= cnt;++i) {
now += a[i];
if(now >= x) now = 0,ret ++;
}
return ret;
}
void main() {
for(int i = 1;i <= n;++i)
if(du[i] == 1) {dfs(i,0);break;}
int l = 1000000,r = 0;
for(int i = 1;i <= ejs;i += 2) {
l = min(l,e[i].w);r += e[i].w;
}
int ans = 0;
while(l <= r) {
int mid = (l + r) >> 1;
if(check(mid) >= m) ans = mid,l = mid + 1;
else r = mid - 1;
}
cout<<ans<<endl;
}
}
int L = 100000,R;
namespace BF5 {
int ANS;
int dfs(int u,int fa,int x) {
multiset<int>s;
int ret = 0;
// if(!s.empty()) printf("%d\n",u);
for(int i = head[u];i;i = e[i].nxt) {
int v = e[i].v;
if(v == fa) continue;
int k = dfs(v,u,x);
if(k + e[i].w >= x) ANS++;
else s.insert(k + e[i].w);
}
while(!s.empty()) {
multiset<int>::iterator it = s.begin();
int k = *it;
s.erase(it);
multiset<int>::iterator is = s.lower_bound(x - k);
if(is == s.end()) ret = max(ret,k);
else ANS++,s.erase(is);
}
// s.clear();
// printf("%d %d\n",u,ret);
return ret;
}
void main() {
int l = L,r = R,ans = 0;
while(l <= r) {
int mid =(l + r) >> 1;
ANS = 0;dfs(1,0,mid);
if(ANS >= m) ans = mid,l = mid + 1;
else r = mid - 1;
}
cout<<ans;
}
}
int main() {
n = read(),m = read();
int bz1 = 1,bz2 = 1;
for(int i = 1;i < n;++i) {
int u = read(),v = read(),w = read();
L = min(L,w);R += w;
du[u]++;du[v]++;
add(u,v,w);add(v,u,w);
if(u != 1) bz1 = 0;
if(v != u + 1) bz2 = 0;
}
if(m == 1) {BF1::main();return 0;}
if(bz1) {BF2::main();return 0;}
if(bz2) {BF3::main();return 0;}
BF5::main();
return 0;
}
/*
7 1
1 2 10
1 3 5
2 4 9
2 5 8
3 6 6
3 7 7
*/
Noip2018Day1T3 赛道修建的更多相关文章
- Luogu5021 [NOIP2018]赛道修建
Luogu5021 [NOIP2018]赛道修建 一棵大小为 \(n\) 的树,边带权.选 \(m\) 条链使得长度和最小的链最大. \(m<n\leq5\times10^4\) 贪心,二分答案 ...
- [NOIp2018提高组]赛道修建
[NOIp2018提高组]赛道修建 题目大意: 给你一棵\(n(n\le5\times10^4)\)个结点的树,从中找出\(m\)个没有公共边的路径,使得第\(m\)长的路径最长.问第\(m\)长的路 ...
- noip2018 D1T3 赛道修建
题目描述 C 城将要举办一系列的赛车比赛.在比赛前,需要在城内修建 mm 条赛道. C 城一共有 nn 个路口,这些路口编号为 1,2,…,n1,2,…,n,有 n-1n−1 条适合于修建赛道的双向通 ...
- noip 2018 D1T3 赛道修建
noip 2018 D1T3 赛道修建 首先考虑二分答案,这时需要的就是对于一个长度求出能在树中选出来的最多的路径条数.考虑到一条路径是由一条向上的路径与一条向下的路径构成,或者仅仅是向上或向下的路径 ...
- 【LG5021】[NOIP2018]赛道修建
[LG5021][NOIP2018]赛道修建 题面 洛谷 题解 NOIP之前做过增强版还没做出来\(QAQ\) 一看到题目中的最大值最小,就很容易想到二分答案 重点是考虑如何\(check\) 设\( ...
- 【noip2018】【luogu5021】赛道修建
题目描述 C 城将要举办一系列的赛车比赛.在比赛前,需要在城内修建 mm 条赛道. C 城一共有 nn 个路口,这些路口编号为 1,2,…,n1,2,…,n,有 n-1n−1 条适合于修建赛道的双向通 ...
- 竞赛题解 - NOIP2018 赛道修建
\(\mathcal {NOIP2018}\) 赛道修建 - 竞赛题解 额--考试的时候大概猜到正解,但是时间不够了,不敢写,就写了骗分QwQ 现在把坑填好了~ 题目 (Copy from 洛谷) 题 ...
- [NOIP2018TG]赛道修建
[NOIP2018TG]赛道修建 考场上multiset调不出啊啊啊!!! 首先肯定是二分答案 做树形dp,f[i]表示i点的子树两两匹配后剩下的最长长度 匹配可以用multiset维护 但是菊花图跑 ...
- 【题解】 P5021赛道修建
[题解]P5021 赛道修建 二分加贪心,轻松拿省一(我没有QAQ) 题干有提示: 输出格式: 输出共一行,包含一个整数,表示长度最小的赛道长度的最大值. 注意到没,最小的最大值,还要多明显? 那么我 ...
随机推荐
- ubuntu 安装在硬盘与配置
安装 下载Ubuntu ISO文件,使用rufus制作启动U盘,重启选择这个U盘启动. 用rufus做启动盘时,提示缺少文件,点下载,找到log,进入找到下载地址,手动下载,并放到软件所在路径下的文件 ...
- 2019QM大作业2-weyl半金属Landau Level
目录 说明 for cnblog QM大作业2--weyl半金属的Landau Level \(\boldsymbol{Abstract}\) 说明 Landau Level 自旋与pauli mat ...
- html5的 history模式和hash模式
直观区别 hash 带一个# history 没有# 各自特点 hash: 仅 hash 符号之前的内容会被包含在请求中,**因此对于后端来说,即使没有做到对路由的全覆盖,也不会返回 404 错误.* ...
- OAuthon2.0机制详解
最近在忙企业微信和钉钉的第三方应用开发,需要获取一些信息,第一个就是这个OAuthon2.0,先详细了解下概念和流程 一.应用场景 我们要想用第三方播放器播放你的云盘账号里面的一些秘密视频资源,为了要 ...
- phpMyAdmin开启IP地址登录
根本没有其他文章说的那么麻烦,又是修改配置文件,又是修改首页文件.在根目录下有个libraries文件夹,进去有个config.default.php文件,修改里面的AllowArbitrarySer ...
- linux-认识vi vim
vi 编译器 Linux vi 命令非常强大,熟练地使用它可以高效的编辑代码,配置系统文件等 命令:vi [文件] vim [文件] vi 分为三种模式:命令模式.文字模式.末尾模式 -------- ...
- @ImportResource
1. @ImportResource(locations = {"classpath:beantest.xml"})标注到启动类上,从类路径下加载xml文件,通过Applicati ...
- csp2019后的感慨
你还记得曾经加入oi的初衷吗? ... 我们都不想输,可谁都没有赢... --前言 没有太大的感想,也不配去写感想...就记录一下初学者失败的原因吧.希望看过的人能引以为戒. 做题的时候,不到万不得已 ...
- 划分为k个相等的子集
给定一个整数数组 nums 和一个正整数 k,找出是否有可能把这个数组分成 k 个非空子集,其总和都相等. 示例 1: 输入: nums = [4, 3, 2, 3, 5, 2, 1], k = 4 ...
- 2019年跨越速递Java工程师笔试题
1.下面哪个选项可以用于JSP页面之间传递对象(A C) A application B page C session D error E response 评语:这道题考察的是对JSP内置对象的了 ...