BZOJ2038

题意:q(5000)次询问,问在区间中随意取两个值,这两个值恰好相同的概率是多少?分数表示;

感觉自己复述的题意极度抽象,还是原题意有趣(逃;

思路:设在L到R这个区间中,x这个值得个数为a个,y这个值的个数为b个,z这个值的个数为c个。

   那么答案即为 (a*(a-1)/2+b*(b-1)/2+c*(c-1)/2....)/((R-L+1)*(R-L)/2)

   化简得: (a^2+b^2+c^2+...x^2-(a+b+c+.....)) / ((R-L+1)*(R-L))

   显然其中(a+b+c+.....)就是区间的长度,每个值得个数总和。

   即: (a^2+b^2+c^2+...x^2-(R-L+1))/((R-L+1)*(R-L))

   每次sum记录a^2+b^2+c^2+...x^2,用莫队转移即可。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <list>
#include <cstdlib>
#include <iterator>
#include <cmath>
#include <iomanip>
#include <bitset>
#include <cctype>
using namespace std;
//#pragma comment(linker, "/STACK:102400000,102400000") //c++
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull; typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; // template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
// #define _DEBUG; //*//
#ifdef _DEBUG
freopen("input", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
/*-----------------------show time----------------------*/
const int B = ;
#define bel(x) ((x-1)/B + 1)
int n,m;
ll sum = ;
const int maxn = ;
struct node
{
ll le,ri;
int id;
}q[maxn];
struct res{
ll a,b;
}ans[maxn];
int cnt[maxn],col[maxn];
bool cmp(node a,node b){
if(bel(a.le) == bel(b.le)){
return a.ri < b.ri;
}
return bel(a.le) < bel(b.le);
}
void del(int x){
sum = sum - 1ll * cnt[x] * cnt[x];
cnt[x]--;
sum = sum + 1ll * cnt[x] * cnt[x];
}
void add(int x){
sum = sum - 1ll * cnt[x] * cnt[x];
cnt[x] ++;
sum = sum + 1ll * cnt[x] * cnt[x];
}
int main(){
scanf("%d%d", &n, &m);
for(int i=; i<=n; i++) scanf("%d", &col[i]);
for(int i=; i<=m; i++){
scanf("%lld%lld", &q[i].le, &q[i].ri);
q[i].id = i;
} sort(q+,q++m,cmp);
int pl = , pr = ;
sum = ;
for(int i=; i<=m; i++){
while(pl < q[i].le) del(col[pl++]);
while(pl > q[i].le) add(col[--pl]);
while(pr < q[i].ri) add(col[++pr]);
while(pr > q[i].ri) del(col[pr--]);
if(q[i].le == q[i].ri){
ans[q[i].id].a = ;
ans[q[i].id].b = ;
continue;
}
ans[q[i].id].a = sum - (q[i].ri - q[i].le + );
ans[q[i].id].b = (q[i].ri - q[i].le + ) * (q[i].ri - q[i].le);
}
for(int i=; i<=m; i++){
ll tmp = __gcd(ans[i].a,ans[i].b);
if(tmp==){
printf("%lld/%lld\n", ans[i].a, ans[i].b);
}
else printf("%lld/%lld\n", ans[i].a/tmp, ans[i].b/tmp);
}
return ;
}

BZOJ2038

BZOJ2038 小Z的袜子 莫队的更多相关文章

  1. [国家集训队][bzoj2038] 小Z的袜子 [莫队]

    题面: 传送门 思路: 又是一道标准的莫队处理题目,但是这道题需要一点小改动:求个数变成了求概率 我们思考:每次某种颜色从i个增加到i+1个,符合要求的情况多了多少? 原来的总情况数是i*(i-1)/ ...

  2. 【填坑向】bzoj2038小Z的袜子 莫队

    学莫队必做题,,,但是懒得写.今天来填个坑 莫队水题 莫队实际上就是按一个玄学顺序来离线计算询问,保证复杂度只会多一个n1/2,感觉是玄学(离线算法都很玄学) 易错点:要开long long(卡我半天 ...

  3. BZOJ2038 小Z的袜子(莫队之源)

    题意+思路: 给你m个区间询问,问每个区间内的$\displaystyle \frac{\sum x^2-(R-L+1)}{(R-L)(R-L+1)} $,其中x为每种数字的个数,用cnt存储: 所以 ...

  4. 小Z的袜子 & 莫队

    莫队学习 & 小Z的袜子 引入 莫队 由莫涛巨佬提出,是一种离线算法 运用广泛 可以解决广大的离线区间询问题 莫队的历史 早在mt巨佬提出莫队之前 类似莫队的算法和莫队的思想已在Codefor ...

  5. BZOJ 2038 [2009国家集训队]小Z的袜子 莫队

    2038: [2009国家集训队]小Z的袜子(hose) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Descriptionw ...

  6. 【国家集训队2010】小Z的袜子[莫队算法]

    [莫队算法][国家集训队2010]小Z的袜子 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程, ...

  7. bzoj 2308 小Z的袜子(莫队算法)

    小Z的袜子 [题目链接]小Z的袜子 [题目类型]莫队算法 &题解: 莫队算法第一题吧,建议先看这个理解算法,之后在参考这个就可以写出简洁的代码 我的比第2个少了一次sort,他的跑了1600m ...

  8. P1494 [国家集训队]小Z的袜子/莫队学习笔记(误

    P1494 [国家集训队]小Z的袜子 题目描述 作为一个生活散漫的人,小\(Z\)每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小\(Z\)再也无法忍受这恼人的找袜子过程,于是他 ...

  9. BZOJ2038 [2009国家集训队]小Z的袜子 莫队+分块

    作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z把这N只袜子从1到N编号,然后从 ...

随机推荐

  1. 10分钟了解分布式CAP、BASE理论

    CAP理论 2000年7月,Eric Brewer教授提出CAP猜想:2年后,Seth Gilbert和Nancy Lynch从理论上证明了CAP:之后,CAP理论正式成为分布式计算领域的公认定理. ...

  2. 破解EFCore扩展Dll --- Z.EntityFramework.Extensions.EFCore

    安装 Z.EntityFramework.Extensions.EFCore Install-Package Z.EntityFramework.Extensions.EFCore -Version ...

  3. java+springBoot+Thymeleaf+vue分页组件的定义

    导读 本篇着重介绍java开发环境下,如何写一个vue分页组件,使用到的技术点有java.springBoot.Thymeleaf等: 分页效果图 名称为vuepagerbasic的分页组件,只包含上 ...

  4. Eclipse 连接不上 hadoop 的解决办法

    先说一下我的情况,集群的 hadoop 是 1.0.4 ,之后在虚拟机上搭建了最新稳定版 1.2.1 之后,Eclipse 插件始终连接不上. 出现 Error: Call to 192.168.1. ...

  5. idea使用大全(加载mysql驱动)

    1.载入mysql驱动 找到项目结构(project structure) 选Modules 找到右边的加号选择第一个 OK

  6. PHP 的一些底层知识

    本篇内容比较干涩,请自备矿泉水 文章分6个主题进行讲解 PHP运行机制和原理 PHP底层变量数据结构 PHP传值赋值中的COW特性 PHP垃圾回收机制 PHP中数组底层分析 PHP数组函数分类 PHP ...

  7. pythonday02基础与运算符

    今日概要 1.循环 2.字符串格式化 3.运算符 4.编码 if的嵌套 score = input('请输入成绩') score_int = int(score) if score_int >= ...

  8. 十分钟入门流处理框架Flink --实时报表场景的应用

    随着业务的发展,数据量剧增,我们一些简单报表大盘类的任务,就不能简单的依赖于RDBMS了,而是依赖于数仓之类的大数据平台. 数仓有着巨量数据的存储能力,但是一般都存在一定数据延迟,所以要想完全依赖数数 ...

  9. [ZJOI2011]看电影(组合数学,高精度)

    [ZJOI2011]看电影 这题模型转化很巧妙.(神仙题) 对于这种题首先肯定知道答案就是合法方案除以总方案. 总方案显然是\(k^n\). 那么考虑怎么算合法方案. 当\(n>k\)的时候显然 ...

  10. win10下vc++6.0的安装问题

    由于最近需要在win10系统下用到vc++来编程(其实刚开始我是拒绝的,因为vc++各种坑),下面我就把安装vc++时遇到的问题记录下来,方便以后同样遇到这些问题的同学. 安装vc++6.0所需要东西 ...