[HNOI2008]玩具装箱toy(斜率优化dp)
前言
这是我写的第一道$dp$斜率优化的题目,$dp$一直都很菜,而且咖啡鸡都说了这是基础的东西,然而看别人对$dp$斜率优化一大堆公式又看不懂就老老实实做几道题目,这个比较实在
描述
给出$n$和$l$.有$n$个玩具,第$i$个玩具的长度是$c[i]$,要求将玩具分成若干段,从$i$到$j$分为一段的长度为$x=j-i+\sum_{k=i}^{j}c[k]$,费用为$(x-l)^{2}$. 求最小费用 [Link]
分析
用$dp[i]$表示前i个玩具所需的最小费用,则有
$dp[i]=min\left \{ dp[j]+(sum[i]-sum[j]+i-(j+1)-l)^{2}(1<=j<i) \right \}$
其中$sum[i]$表示的是$c[i]$的前缀和.
为了方便,我们设
$A[i]=sum[i]+i,l=l+1$
于是原方程就等价于
$dp[i]=min\left\{dp[j]+(A[i]−A[j]−l)^{2}(1<=j<i)\right\}$
我们设$j<k<i$且在计算$dp[i]$的时候,决策k更优.也就是说
$dp[k]+(A[i]−A[k]−l)^{2}<dp[j]+(A[i]−A[j]−l)^{2}$
在纸上写写画画,把式子打开再变一下形,容易得到
$\frac{[dp[k]+(A[k]+l)^{2}]-[dp[j]+(A[j]+l)^{2}]}{2\times A[k]-2\times A[j]}$ $<A[i]$
是不是很像
$\frac{Y_{k}-Y_{j}}{X_{k}-X_{j}}$
的形式?
这玩意儿不就是斜率吗?!我们设它为$g(k,j)$
我们可以发现$A[i]$是单调递增的,所以所有决策可以转化为二维空间上的点集.
也就是说$k$这个点和j这个点的连线的斜率如果小于$A[i]$,那么$k$这个决策就更优.
那么对于三个决策$a<b<c$,如果有$g(c,b)<=g(b,a)$,那么$b$决策一定不会被选中.为什么呢?我们来讨论一下(对于任意$3<i<=n$):
1.如果$g(b,a)<A[i]$,那么必有$g(c,b)<A[i]$,也就是$c$最优,选择决策$c$.
2.如果$g(b,a)>=A[i]$,那么$b$不是最优,最优可能是$a$或$c$.
所以我们在新加入一个点的时候,就可以把它看作$c$,然后把所有这样的$b$都去掉,直到$g(c,b)>g(b,a)$,所以我们需要处理的斜率是单调递增的.
这样我们就可以用一个单调队列分别维护队首和队尾啦.
Code
#include <cstdio>
#define ll long long
#define Empty (head>=tail)
const int maxn = 5e4+;
ll n, L, head, tail, j;
ll Q[maxn], sum[maxn], s[maxn], f[maxn];
inline double X(ll i) {return s[i];}
inline double Y(ll i) {return f[i]+(s[i]+L-)*(s[i]+L-);}
inline double Rate(ll i,ll k) {return (Y(k)-Y(i))/(X(k)-X(i));}
int main()
{
scanf("%lld%lld", &n, &L);
for (int i = ; i <= n; i++) {
scanf("%lld", &sum[i]);
sum[i] += sum[i-], s[i] = sum[i]+i;
}
head = tail = ; Q[] = ;
for (int i = ; i <= n; i++) {
while(!Empty&&Rate(Q[head],Q[head+])<*s[i]) head++;
j = Q[head]; f[i] = f[j]+(s[i]-s[j]-L-)*(s[i]-s[j]-L-);
while(!Empty&&Rate(Q[tail-],Q[tail])>Rate(Q[tail],i)) tail--;
Q[++tail] = i;
}
printf("%lld\n", f[n]);
}
网上讲了很多数形结合的方法,找截距最小,的确对理解很有帮助,但是可能像这样的对我来说更好理解,另外有些细枝末节的东西没有完全看懂,但是现在没必要纠结.
建议多看些博客,了解不同的想法,慢慢就会理解
这里能用斜率优化是因为A[i]是单调的,至于具体为什么,先不细究
参考文章:
https://www.cnblogs.com/Sunnie69/p/5575464.html
https://www.cnblogs.com/terribleterrible/p/9669614.html
https://www.cnblogs.com/Paul-Guderian/p/7259491.html
https://www.cnblogs.com/Parsnip/p/10323508.html
https://www.cnblogs.com/Tidoblogs/p/11301512.html
[HNOI2008]玩具装箱toy(斜率优化dp)的更多相关文章
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- P3195 [HNOI2008]玩具装箱TOY 斜率优化dp
传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...
- [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
- Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...
- 【BZOJ1010】【HNOI2008】玩具装箱toy (斜率优化DP) 解题报告
题目: 题目在这里 思路与做法: 这题不难想. 首先我们先推出一个普通的dp方程: \(f_i = min \{ f_j+(i-j-1+sum_i-sum_j-L)^2\}\) 然后就推一推式子了: ...
- 『玩具装箱TOY 斜率优化DP』
玩具装箱TOY(HNOI2008) Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊 ...
- [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp
玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...
随机推荐
- 重新认识 async/await 语法糖
提起.Net中的 async/await,相信很多.neter 第一反应都会是异步编程,其本质是语法糖,但继续追查下去,既然是语法糖,那么经过编译之后,真正的代码是什么样的,如何执行的?带着这些疑问, ...
- Netty-解码器架构与常用解码器
任何数据类型想在网络中进行传输,都得经过编解码转换成字节流 在netty中,服务端和客户端进行通信的其实是下面这样的 程序 ---编码--> 网络 网路 ---解码--> 程序 对应服务端 ...
- InstantiationException:mybatis.spring.transaction.SpringManagedTransactionFactory
问题表现 Error creating bean with name 'sqlSessionFactory' Invocation of init method failed; nested exce ...
- 基于 HTML5 WebGL 的民航客机飞行监控系统
前言 前些日子出差,在飞机上看到头顶的监控面板,除了播放电视剧和广告之外,还会时不时的切换到一个飞机航行的监控系统,不过整个监控系统让人感到有一点点的简陋,所以我就突发奇想制作了一个采用 HT for ...
- C# Winform程序如何使用ClickOnce发布并自动升级(图解)
有不少朋友问到C#Winform程序怎么样配置升级,怎么样打包,怎么样发布的,在这里我解释一下打包和发布关于打包的大家可以看我的文章C# winform程序怎么打包成安装项目(图解)其实打包是打包,发 ...
- IBM RAD中集成Websphere启动后无法debug解决办法
问题描述: IBM Rational Application Developer for WebSphere软件在启动WebSphere的时候无法以debug模式启动,debug启动后显示为start ...
- Deque 和Queue
概述 接口,一个线性结合,支持在集合首尾add , remove , deque 是double ended queue 的缩写,意味双端队列,接口提供的方法有两种类型,如果失败,一种抛出异常,一种 ...
- Python解释器安装教程和环境变量配置
Python解释器安装教程和环境变量配置 Python解释器安装 登录Python的官方网站 https://www.python.org/ 进行相应版本的下载. 第一步:根据电脑系统选择软件适 ...
- div span img对齐,垂直居中对齐问题
我想你们在前端开发中或多或少都遇到过这种问题,文字和图片不能平齐,很是头疼. HTML代码: <div class="">小太阳<span>小太阳</ ...
- 【iOS】NSLog 打印 BOOL 类型值
这个问题以前没在意,刚偶然打印,发现有些问题,上网查了下,发现是这么搞的: NSLog(@"%@", isEqual?@"YES":@"NO" ...