前言


这是我写的第一道$dp$斜率优化的题目,$dp$一直都很菜,而且咖啡鸡都说了这是基础的东西,然而看别人对$dp$斜率优化一大堆公式又看不懂就老老实实做几道题目,这个比较实在

描述


给出$n$和$l$.有$n$个玩具,第$i$个玩具的长度是$c[i]$,要求将玩具分成若干段,从$i$到$j$分为一段的长度为$x=j-i+\sum_{k=i}^{j}c[k]$,费用为$(x-l)^{2}$. 求最小费用    [Link]

分析


用$dp[i]$表示前i个玩具所需的最小费用,则有

            $dp[i]=min\left \{ dp[j]+(sum[i]-sum[j]+i-(j+1)-l)^{2}(1<=j<i) \right \}$

其中$sum[i]$表示的是$c[i]$的前缀和.

为了方便,我们设

                $A[i]=sum[i]+i,l=l+1$

于是原方程就等价于

            $dp[i]=min\left\{dp[j]+(A[i]−A[j]−l)^{2}(1<=j<i)\right\}$

我们设$j<k<i$且在计算$dp[i]$的时候,决策k更优.也就是说

            $dp[k]+(A[i]−A[k]−l)^{2}<dp[j]+(A[i]−A[j]−l)^{2}$

在纸上写写画画,把式子打开再变一下形,容易得到

            $\frac{[dp[k]+(A[k]+l)^{2}]-[dp[j]+(A[j]+l)^{2}]}{2\times A[k]-2\times A[j]}$ $<A[i]$

是不是很像

                $\frac{Y_{k}-Y_{j}}{X_{k}-X_{j}}$
的形式?

这玩意儿不就是斜率吗?!我们设它为$g(k,j)$

我们可以发现$A[i]$是单调递增的,所以所有决策可以转化为二维空间上的点集.

也就是说$k$这个点和j这个点的连线的斜率如果小于$A[i]$,那么$k$这个决策就更优.

那么对于三个决策$a<b<c$,如果有$g(c,b)<=g(b,a)$,那么$b$决策一定不会被选中.为什么呢?我们来讨论一下(对于任意$3<i<=n$):

1.如果$g(b,a)<A[i]$,那么必有$g(c,b)<A[i]$,也就是$c$最优,选择决策$c$.

2.如果$g(b,a)>=A[i]$,那么$b$不是最优,最优可能是$a$或$c$.

所以我们在新加入一个点的时候,就可以把它看作$c$,然后把所有这样的$b$都去掉,直到$g(c,b)>g(b,a)$,所以我们需要处理的斜率是单调递增的.

这样我们就可以用一个单调队列分别维护队首和队尾啦.

Code

#include <cstdio>
#define ll long long
#define Empty (head>=tail)
const int maxn = 5e4+;
ll n, L, head, tail, j;
ll Q[maxn], sum[maxn], s[maxn], f[maxn];
inline double X(ll i) {return s[i];}
inline double Y(ll i) {return f[i]+(s[i]+L-)*(s[i]+L-);}
inline double Rate(ll i,ll k) {return (Y(k)-Y(i))/(X(k)-X(i));}
int main()
{
scanf("%lld%lld", &n, &L);
for (int i = ; i <= n; i++) {
scanf("%lld", &sum[i]);
sum[i] += sum[i-], s[i] = sum[i]+i;
}
head = tail = ; Q[] = ;
for (int i = ; i <= n; i++) {
while(!Empty&&Rate(Q[head],Q[head+])<*s[i]) head++;
j = Q[head]; f[i] = f[j]+(s[i]-s[j]-L-)*(s[i]-s[j]-L-);
while(!Empty&&Rate(Q[tail-],Q[tail])>Rate(Q[tail],i)) tail--;
Q[++tail] = i;
}
printf("%lld\n", f[n]);
}

网上讲了很多数形结合的方法,找截距最小,的确对理解很有帮助,但是可能像这样的对我来说更好理解,另外有些细枝末节的东西没有完全看懂,但是现在没必要纠结.

建议多看些博客,了解不同的想法,慢慢就会理解

这里能用斜率优化是因为A[i]是单调的,至于具体为什么,先不细究

参考文章:
https://www.cnblogs.com/Sunnie69/p/5575464.html

https://www.cnblogs.com/terribleterrible/p/9669614.html

https://www.cnblogs.com/Paul-Guderian/p/7259491.html

https://www.cnblogs.com/Parsnip/p/10323508.html

https://www.cnblogs.com/Tidoblogs/p/11301512.html

[HNOI2008]玩具装箱toy(斜率优化dp)的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  2. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  3. 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  4. P3195 [HNOI2008]玩具装箱TOY 斜率优化dp

    传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...

  5. [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  6. 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP

    题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...

  7. Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...

  8. 【BZOJ1010】【HNOI2008】玩具装箱toy (斜率优化DP) 解题报告

    题目: 题目在这里 思路与做法: 这题不难想. 首先我们先推出一个普通的dp方程: \(f_i = min \{ f_j+(i-j-1+sum_i-sum_j-L)^2\}\) 然后就推一推式子了: ...

  9. 『玩具装箱TOY 斜率优化DP』

    玩具装箱TOY(HNOI2008) Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊 ...

  10. [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp

    玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...

随机推荐

  1. 基于百度EasyDL定制化图像识别平台的海洋鱼类识别方法

    [目的]鱼类识别对渔业资源的开发利用有着重要的意义.针对海底环境恶劣.拍摄环境亮度低.场景模糊的实际情况导致海底观测视频品质差,视频中的鱼类识别难的问题以及现有鱼类识别方法存在的鱼类标注数据集过少导致 ...

  2. Excel催化剂开源第4波-ClickOnce部署要点之导入数字证书及创建EXCEL信任文件夹

    Excel催化刘插件使用Clickonce的部署方式发布插件,以满足用户使用插件过程中,需要对插件进行功能升级时,可以无痛地自动更新推送新版本.但Clickonce部署,对用户环境有较大的要求,前期首 ...

  3. LINUX下查找大文件及大的文件夹

    原帖地址:https://www.cnblogs.com/iyoume2008/p/6105590.html 今天正好碰到这样的问题,在博客园中看到有以上地址的一篇文章,照着上面的操作解决了问题,但是 ...

  4. .Net MVC 动态生成LayUI tree

    .Net MVC 动态生成LayUI tree 最近在做项目的过程中需要用到Tree插件,所以找了一堆Tree发现LayUI的Tree样式比较好看,所以开始搞! 1.Layui部分 1.1 首先引用文 ...

  5. Linux vi/vim使用

    vi/vim 基本使用方法 vi编辑器是所有Unix及Linux系统下标准的编辑器,它的强大不逊色于任何最新的文本编辑器,这里只是简单地介绍一下它的用法和一小部分指令. 1.vi的基本概念 基本上vi ...

  6. sqlmap续

    sqlmap续 注入语句(知道绝对路径时候可用) http://192.168.99.171/test2/sqli/example10.php?catid=3’union select 1,’< ...

  7. solr集群

    一.所需环境 1.linux系统(内存分大点) 2.JDK 3.zookeeper 4.solr 二.安装zookeeper 1.此次安装3个zookeeper 2.tar -zxf zookeepe ...

  8. linuk相关命令

    1,Linux的每个文件一般都有三个权限 r--读,w--写,x--执行,其分别对应的数值为4,2,1. 输入ll可以查看到文件的权限. 2,给目录或文件授权 chmod 777 目录名 chmod ...

  9. JAVA-Spring AOP基础 - 代理设计模式

    利用IOC DI实现软件分层,虽然解决了耦合问题,但是很多地方仍然存在非该层应该实现的功能,造成了无法“高内聚”的现象,同时存在大量重复的代码,开发效率低下. @Service public clas ...

  10. hdoj 1753 (Java)

    刚刚开始用Java,代码难免不够简洁. import java.math.BigDecimal; import java.util.Scanner; public class Main { publi ...