压缩感知重构算法之OMP算法python实现

压缩感知重构算法之CoSaMP算法python实现

压缩感知重构算法之SP算法python实现

压缩感知重构算法之IHT算法python实现

压缩感知重构算法之OLS算法python实现

压缩感知重构算法之IRLS算法python实现

本文主要简单介绍了利用python代码实现压缩感知的过程。

压缩感知简介

【具体可以参考这篇文章

假设一维信号x长度为N,稀疏度为K。Φ 为大小M×N矩阵(M<<N)。y=Φ×x为长度M的一维测量值。压缩感知问题就是已知测量值y和测量矩阵Φ的基础上,求解欠定方程组y=Φ×x得到原信号x。Φ的每一行可以看作是一个传感器(Sensor),它与信号相乘,采样了信号的一部分信息。而这一部分信息足以代表原信号,并能找到一个算法来高概率恢复原信号。 一般的自然信号x本身并不是稀疏的,需要在某种稀疏基上进行稀疏表示x=ψs,ψ为稀疏基矩阵,S为稀疏系数。所以整个压缩感知过程可以描述为

y=Φx=ΦΨs=Θs

重建算法:OMP算法简析

OMP算法

输 入:测量值y、传感矩阵Phi=Φψ、稀疏度K

初始化:初始残差 r0=y,迭代次数t=1,索引值集合index;

步 骤:

1、找到残差r和传感矩阵的列积中最大值对应下标,也就是找到二者内积绝对值最大的一个元素对应的下标,保存到index当中

2、利用index从传感矩阵中找到,新的索引集Phit

3、利用最小二乘法处理新的索引集和y得到新的近似值θ=argmin||y−Phitθ||2

4、计算新的残差rt=y−Phitθ,t=t+1

5、残差是否小于设定值,小于的话 退出循环,不小于的话再判断t>K是否成立,满足即停止迭代,否则重新回到步骤1,继续执行该算法。

输 出:θ的K-稀疏近似值


实验

要利用python实现,电脑必须安装以下程序

  • python (本文用的python版本为3.5.1)
  • numpy python包(本文用的版本为1.10.4)
  • scipy python包(本文用的版本为0.17.0)
  • pillow python包(本文用的版本为3.1.1)

python代码

#coding:utf-8
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# DCT基作为稀疏基,重建算法为OMP算法 ,图像按列进行处理
# 参考文献: 任晓馨. 压缩感知贪婪匹配追踪类重建算法研究[D].
#北京交通大学, 2012.
#
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# 导入所需的第三方库文件
import numpy as np
import math
from PIL import Image #读取图像,并变成numpy类型的 array
im = np.array(Image.open('lena.bmp')) #图片大小256*256 #生成高斯随机测量矩阵
sampleRate=0.7 #采样率
Phi=np.random.randn(256*sampleRate,256) #生成稀疏基DCT矩阵
mat_dct_1d=np.zeros((256,256))
v=range(256)
for k in range(0,256):
dct_1d=np.cos(np.dot(v,k*math.pi/256))
if k>0:
dct_1d=dct_1d-np.mean(dct_1d)
mat_dct_1d[:,k]=dct_1d/np.linalg.norm(dct_1d) #随机测量
img_cs_1d=np.dot(Phi,im) #OMP算法函数
def cs_omp(y,D):
L=math.floor(3*(y.shape[0])/4)
residual=y #初始化残差
index=np.zeros((L),dtype=int)
for i in range(L):
index[i]= -1
result=np.zeros((256))
for j in range(L): #迭代次数
product=np.fabs(np.dot(D.T,residual))
pos=np.argmax(product) #最大投影系数对应的位置
index[j]=pos
my=np.linalg.pinv(D[:,index>=0]) #最小二乘,看参考文献1
a=np.dot(my,y) #最小二乘,看参考文献1
residual=y-np.dot(D[:,index>=0],a)
result[index>=0]=a
return result #重建
sparse_rec_1d=np.zeros((256,256)) # 初始化稀疏系数矩阵
Theta_1d=np.dot(Phi,mat_dct_1d) #测量矩阵乘上基矩阵
for i in range(256):
print('正在重建第',i,'列。')
column_rec=cs_omp(img_cs_1d[:,i],Theta_1d) #利用OMP算法计算稀疏系数
sparse_rec_1d[:,i]=column_rec;
img_rec=np.dot(mat_dct_1d,sparse_rec_1d) #稀疏系数乘上基矩阵 #显示重建后的图片
image2=Image.fromarray(img_rec)
image2.show()

matlab代码

%这个代码是网上某位大哥写的,在此谢过了~
function Demo_CS_OMP()
%------------ read in the image --------------
img=imread('lena.bmp'); % testing image
img=double(img);
[height,width]=size(img);
%------------ form the measurement matrix and base matrix -------
Phi=randn(floor(0.7*height),width); % only keep one third of the original data
Phi = Phi./repmat(sqrt(sum(Phi.^2,1)),[floor(0.7*height),1]); % normalize each column mat_dct_1d=zeros(256,256); % building the DCT basis (corresponding to each column)
for k=0:1:255
dct_1d=cos([0:1:255]'*k*pi/256);
if k>0
dct_1d=dct_1d-mean(dct_1d);
end;
mat_dct_1d(:,k+1)=dct_1d/norm(dct_1d);
end %--------- projection ---------
img_cs_1d=Phi*img; %-------- recover using omp ------------
sparse_rec_1d=zeros(height,width);
Theta_1d=Phi*mat_dct_1d;%测量矩阵乘上基矩阵
for i=1:width
column_rec=cs_omp(img_cs_1d(:,i),Theta_1d,height);
sparse_rec_1d(:,i)=column_rec'; % 稀疏系数
end
img_rec_1d=mat_dct_1d*sparse_rec_1d; %稀疏系数乘上基矩阵 %------------ show the results --------------------
figure(1)
subplot(2,2,1),imshow(uint8(img)),title('original image')
subplot(2,2,2),imagesc(Phi),title('measurement mat')
subplot(2,2,3),imagesc(mat_dct_1d),title('1d dct mat')
psnr = 20*log10(255/sqrt(mean((img(:)-img_rec_1d(:)).^2)));
subplot(2,2,4),imshow(uint8(img_rec_1d));
title(strcat('PSNR=',num2str(psnr),'dB')); %*******************************************************%
function hat_x=cs_omp(y,T_Mat,m)
% y=T_Mat*x, T_Mat is n-by-m
% y - measurements
% T_Mat - combination of random matrix and sparse representation basis
% m - size of the original signal
% the sparsity is length(y)/4 n=length(y);
s=floor(3*n/4); % 测量值维数
hat_x=zeros(1,m); % 待重构的谱域(变换域)向量
Aug_t=[]; % 增量矩阵(初始值为空矩阵)
r_n=y; % 残差值 for times=1:s; % 迭代次数(稀疏度是测量的1/4) product=abs(T_Mat'*r_n);
[val,pos]=max(product); %最大投影系数对应的位置
Aug_t=[Aug_t,T_Mat(:,pos)]; %矩阵扩充
T_Mat(:,pos)=zeros(n,1); %选中的列置零
aug_x=(Aug_t'*Aug_t)^(-1)*Aug_t'*y; % 最小二乘,看参考文献1
r_n=y-Aug_t*aug_x; %残差
pos_array(times)=pos; %纪录最大投影系数的位置 end
hat_x(pos_array)=aug_x; % 重构的向量

参考文献

1、最小二乘法介绍 (wiki链接

2、任晓馨. 压缩感知贪婪匹配追踪类重建算法研究[D]. 北京交通大学, 2012.(OMP算法介绍)

欢迎python爱好者加入:学习交流群 667279387

压缩感知重构算法之OMP算法python实现的更多相关文章

  1. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  2. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  3. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  4. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  5. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 浅谈压缩感知(二十一):压缩感知重构算法之正交匹配追踪(OMP)

    主要内容: OMP的算法流程 OMP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.OMP的算法流程 二.OMP的MATL ...

  7. 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)

    主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...

  8. 浅谈压缩感知(二十六):压缩感知重构算法之分段弱正交匹配追踪(SWOMP)

    主要内容: SWOMP的算法流程 SWOMP的MATLAB实现 一维信号的实验与结果 门限参数a.测量数M与重构成功概率关系的实验与结果 SWOMP与StOMP性能比较 一.SWOMP的算法流程 分段 ...

  9. 浅谈压缩感知(二十五):压缩感知重构算法之分段正交匹配追踪(StOMP)

    主要内容: StOMP的算法流程 StOMP的MATLAB实现 一维信号的实验与结果 门限参数Ts.测量数M与重构成功概率关系的实验与结果 一.StOMP的算法流程 分段正交匹配追踪(Stagewis ...

随机推荐

  1. Java设计模式之单利模式(Singleton)

    单利模式的应用场景: 单利模式(Singleton Pattern)是指确保一个类在任何情况下都绝对只有一个实例.并提供一个全局反访问点.单利模式是创建型模式.单利模式在生活中应用也很广泛,比如公司C ...

  2. docker初解

    1 什么是容器 容器就是在隔离的环境中运行的一个进程,如果进程停止,容器就会退出. 隔离的环境拥有自己的系统文件,ip地址,主机名等 容器是一种软件打包技术 程序:代码,命令进程:正在运行的程序容器的 ...

  3. linux redhat系列后缀为el5,el6,el7软件包的区别

    - EL6软件包用于在Red Hat 6.x, CentOS 6.x, and CloudLinux 6.x进行安装 - EL5软件包用于在Red Hat 5.x, CentOS 5.x, Cloud ...

  4. 一.web服务机制

    web服务机制 我们先跟着**(Web服务器工作原理总体描述01)这张图,将一次Web服务的工作流程过一遍,我们假设以浏览器作为客户端(1) 用户做出了一个操作,可以是填写网址敲回车,可以是点击链接, ...

  5. veu npm run dev指定host

    通常,我们可以在vue项目中的config/index.js指定host,,如下(解host的注释) 但是,在接手的目前项目中,解注释host后,npm run dev并有变为 http://192. ...

  6. HTML的条件注释和hack技术

    在很多时候,前端的兼容性问题,都很让人头痛!幸运的是,微软从去年声明:从2016年1月12日起,微软将停止为IE8(包括IE8)提供技术支持和安全更新.整个前端圈子都沸腾起来,和今年七月份Adobe宣 ...

  7. 宋宝华: Linux内核编程广泛使用的前向声明(Forward Declaration)

    本文系转载,著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 作者:宋宝华 来源: 微信公众号linux阅码场(id: linuxdev) 前向声明 编程定律 先强调一点:在一切可 ...

  8. 生成Alpine LXC容器的根文件系统

    一个Alpine LXC容器的文件系统内容包括以下内容 根文件系统 应用程序,库文件以及配置文件 根文件系统主要包含alpine linux最小系统所需要的组件.下面主要讲一下制作根文件系统的方法. ...

  9. Android性能优化总结

    合理的管理内存 节制地使用Service,尽量使用IntentService 避免在Bitmap上浪费内存,压缩图片处理 谨慎使用抽象编程 尽量避免会用依赖注入框架 使用ProGuard简化代码,好处 ...

  10. Eclipse设置Working Set管理项目和detach合并分离窗口

    当项目多了的时候,使用Working Set分组管理项目很有必要了,不然一大推项目在一起 找起来麻烦,看起来也难受~ ​ 所以根据给项目不同分类就很有必要了. 之前myeclipse设置了,今天装了一 ...