No.1. 数据归一化的目的
数据归一化的目的,就是将数据的所有特征都映射到同一尺度上,这样可以避免由于量纲的不同使数据的某些特征形成主导作用。
 
No.2. 数据归一化的方法
数据归一化的方法主要有两种:最值归一化和均值方差归一化。
 
最值归一化的计算公式如下:

最值归一化的特点是,可以将所有数据都映射到0-1之间,它适用于数据分布有明显边界的情况,容易受到异常值(outlier)的影响,异常值会造成数据的整体偏斜。
 
均值方差归一化的计算公式如下:

均值方差归一化的特点是,可以将数据归一化到均值为0方差为1的分布中,不容易受到异常值(outlier)影响。
 
No.3. 向量和矩阵的最值归一化
 
向量的最值归一化

矩阵的最值归一化

No.4. 向量和矩阵的均值方差归一化
 
向量的均值方差归一化

矩阵的均值方差归一化

 
No.5. sklearn中对数据集归一化的流程

No.6. 使用鸢尾花数据集进行数据归一化

No.7. 简单实现一个自己的StandardScaler类

No.8. 机器学习流程回顾:
首先我们需要将数据集分成训练数据集和测试数据集两部分;对于kNN这种算法,我们需要保证数据在同一尺度下,因此要进行数据的归一化,训练数据集通过一个Scaler进行数据的归一化;将归一化后的数据进行训练,训练过程中要使用网格搜索来寻找最好的超参数,训练后得到最终的模型;之后,对于测试数据集,需要使用相同的Scaler进行归一化,然后送进用训练数据集得到的模型,得到模型分类的准确度,这样就可以确定训练数据集得到的模型的优劣。

第四十九篇 入门机器学习——数据归一化(Feature Scaling)的更多相关文章

  1. 第四十六篇 入门机器学习——kNN - k近邻算法(k-Nearest Neighbors)

    No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如 ...

  2. 第四十二篇 入门机器学习——Numpy的基本操作——索引相关

    No.1. 使用np.argmin和np.argmax来获取向量元素中最小值和最大值的索引 No.2. 使用np.random.shuffle将向量中的元素顺序打乱,操作后,原向量发生改变:使用np. ...

  3. 第三十九篇 入门机器学习——Numpy.array的基础操作——合并与分割向量和矩阵

    No.1. 初始化状态 No.2. 合并多个向量为一个向量 No.3. 合并多个矩阵为一个矩阵 No.4. 借助vstack和hstack实现矩阵与向量的快速合并.或多个矩阵快速合并 No.5. 分割 ...

  4. 数据归一化Feature Scaling

    数据归一化Feature Scaling 当我们有如上样本时,若采用常规算欧拉距离的方法sqrt((5-1)2+(200-100)2), 样本间的距离被‘发现时间’所主导.尽管5是1的5倍,200只是 ...

  5. Jmeter(四十九) - 从入门到精通高级篇 - jmeter使用监视器结果监控tomcat性能(详解教程)

    1.简介 上一篇宏哥讲解了利用jmeter的插件来监控服务器资源,这一篇讲解分享如何使用jmeter的监视器结果监控tomcat性能. 2.准备工作 文章标题中提到jmeter和tomcat,那么只需 ...

  6. 第三十八篇 入门机器学习——Numpy.array的基本操作——查看向量或矩阵

    No.1. 初始化状态 No.2. 通过ndim来查看数组维数,向量是一维数组,矩阵是二维数组 No.3. 通过shape来查看向量中元素的个数或矩阵中的行列数 No.4. 通过size来查看数组中的 ...

  7. 第四十九篇 -- 添加联系人信息Addcontact

    往通讯录里添加联系人 首先,在清单文件里添加读写权限 <uses-permission android:name="android.permission.READ_CONTACTS&q ...

  8. 第三十六篇 入门机器学习——Jupyter Notebook中的魔法命令

        No.1.魔法命令的基本形式是:%命令   No.2.运行脚本文件的命令:%run %run 脚本文件的地址 %run C:\Users\Jie\Desktop\hello.py # 脚本一旦 ...

  9. 第三十五篇 入门机器学习——Juptyer Notebook中的常用快捷键

        1.运行当前Cell:Ctrl + Enter   2.运行当前Cell并在其下方插入一个新的Cell:Alt + Enter   3.运行当前Cell并选中其下方的Cell:Shift + ...

随机推荐

  1. nCompass-网络流量基础知识

    nCompass-网络流量基础知识 1.  流量分析基础知识 1.1  常见的流量分析方式: SNMP: 网管平台通过主动式获取设备接口流量信息. Flow:网络设备将穿越的数据流信息精简压缩打包. ...

  2. c语言心形告白代码实现

    c语言心形告白代码实现 1.彩色告白 include<stdio.h> include<math.h> include<windows.h> include< ...

  3. spring cloud微服务快速教程之(五) ZUUL API网关中心

    0-前言 我们一个个微服务构建好了,外部的应用如何来访问内部各种各样的微服务呢?在微服务架构中,后端服务往往不直接开放给调用端,而是通过一个API网关根据请求的url,路由到相应的服务.当添加API网 ...

  4. Javascript 基础学习(四)js 的语句

    由于程序都是自上向下的顺序执行的,所以通过流程控制语句可以改变程序执行的顺序,或者反复的执行某一段的程序. 语句的分类 条件判断语句 条件分支语句 循环语句 条件判断语句 条件判断语句也称为if语句 ...

  5. Redis-位图

    关于位图,可能大家不太熟悉, 那么位图能干啥呢?位图的内容其实就是普通的字符串,也就是byte数组,我们都知道 byte 8 位无符号整数 0 到 255 说个场景.比如你处理一些业务时候,往往会存在 ...

  6. proptypes介绍

    开始 prop-types的主要作用:对props中数据类型进行检测及限制 引用方法:import PropTypes from 'prop-types' 用法: // 基本用法 用来检测数据类型 c ...

  7. docker笔记(2)

    docker笔记(2) 常用命令和操作 1. 镜像操作 操作 命令 说明 检索 docker search 关键字 eg:docker search redis 我们经常去docker hub上检索镜 ...

  8. Linux 文件和目录操作命令(一)

    1.cd (change directory)切换到指定目录 - 返回上次目录 .. 返回上层目录 回车 返回主目录 / 根目录 2.cp (copy)复制文件或目录 -r -R 递归复制该目录及其子 ...

  9. linux - top与ps间的区别

    背景 在linux系统中提供了2个查询系统负荷值的命令,一个是 ps -o THREAD 一个是 top ,这两个命令都能够查询当前进程的CPU使用率情况,但是所代表的含义确实不一样的,ps -o T ...

  10. Linux下VIM编译器的使用以及shell编程基础

    VIM编译器的安装与使用 vim编辑器安装 在CentOS中,执行:yum -y install vim 普通模式 h: 左移一个字符 j: 下移一行 k: 上移一行 l: 右移一个字符 PageDo ...