leetcode 1962. 移除石子使总数最小
题目描述:
给你一个整数数组 piles ,数组 下标从 0 开始 ,其中 piles[i] 表示第 i 堆石子中的石子数量。另给你一个整数 k ,请你执行下述操作 恰好 k 次: 选出任一石子堆 piles[i] ,并从中 移除 floor(piles[i] / 2) 颗石子。
注意:你可以对 同一堆 石子多次执行此操作。 返回执行 k 次操作后,剩下石子的 最小 总数。 floor(x) 为 小于 或 等于 x 的 最大 整数。(即,对 x 向下取整)。 示例 1: 输入:piles = [5,4,9], k = 2
输出:12
解释:可能的执行情景如下:
- 对第 2 堆石子执行移除操作,石子分布情况变成 [5,4,5] 。
- 对第 0 堆石子执行移除操作,石子分布情况变成 [3,4,5] 。
剩下石子的总数为 12 。
示例 2: 输入:piles = [4,3,6,7], k = 3
输出:12
解释:可能的执行情景如下:
- 对第 2 堆石子执行移除操作,石子分布情况变成 [4,3,3,7] 。
- 对第 3 堆石子执行移除操作,石子分布情况变成 [4,3,3,4] 。
- 对第 0 堆石子执行移除操作,石子分布情况变成 [2,3,3,4] 。
剩下石子的总数为 12 。
提示: 1 <= piles.length <= 105
1 <= piles[i] <= 104
1 <= k <= 105 来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/remove-stones-to-minimize-the-total
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路:
1、要使最后剩余的石子数最少,那每次减少的应该是当前石头数目最多的一堆,问题转换为求数组中的最大值问题
2、首先明确最后要求的只是剩余的石头总数,所以顺序可以改变,那么就可以对数组中元素进行排序再找最大值。
3、排序的话就涉及到了排序算法:
由于数组定义后不能修改大小,首先想到把数组转换为list或queue
(1)List的父类是Collection,继承父类的排序方法,而Collection.sort()采用的排序算法是一种改进的归并排序,归并算法的时间复杂度是O(nlog n)
(2)使用Queue构建大顶堆,使用优先级队列,比较实现的是Comparator接口。堆中添加元素时间复杂度O(log N)
4、采用优先级队列构造大顶堆,每次取堆顶元素,减少一半后再加入堆中,循环k次得到最后的堆
5、将队列中所有元素相加得到最后结果。
public class RemoveStone {
//元素可以改变顺序!!超时!!
public int minStoneSum(int[] piles, int k) {
for(int i = 0; i < k; i++){
int max_number = 0;//当前轮最大的数值
int max_number_index = 0;//当前值最大的下标
for(int j = 0; j < piles.length; j++ ){
if(piles[j] > max_number){
max_number_index = j;
max_number = piles[j];
}
}
//去除当前值最的number的一半
piles[max_number_index] -= (int) Math.floor(piles[max_number_index]/2);
}
int sum = 0;
for(int i = 0; i < piles.length; i++){
sum += piles[i];
}
return sum;
}
public int minStoneSum1(int[] piles, int k) {
PriorityQueue<Integer> pq = new PriorityQueue<>((a,b) -> b-a);//构建大顶堆
//将piles中元素入队
for(int i = 0; i < piles.length; i++){
pq.add(piles[i]);
}
//取堆顶元素减少一半并且重新放会堆中,循环k次
//堆添加元素时间复杂度O(log N)
for(int j = 0; j < k; j++){
int top_que = pq.poll();
top_que -= Math.floor(top_que/2.0);
pq.add(top_que);
}
//计算和
int sum = 0;
for(Integer q: pq){
sum += q;
}
return sum;
}
public int minStoneSum2(int[] piles, int k) {
List<Integer> piles_list = new ArrayList<>();
//将数组转换为list 超时!!
for(int i = 0; i< piles.length;i++){
piles_list.add(piles[i]);
}
//Collection.sort()采用的排序算法是一种改进的归并排序,归并算法的时间复杂度是O(nlog n)
for(int j = 0; j < k; j++){
piles_list.sort((a,b)->b-a);//先对list进行倒序排序
piles_list.set(0, piles_list.get(0)-(int) Math.floor(piles_list.get(0)/2.0));//设置第一个值减少原来的一半
}
int sum =0;
for(Integer q : piles_list){
sum += q;
}
return sum;
}
public static void main(String[] args) {
int[] piles = new int[]{4,3,6,7};
int k = 3;
RemoveStone rs = new RemoveStone();
int result = rs.minStoneSum2(piles, k);
System.out.println(result);
}
}
leetcode 1962. 移除石子使总数最小的更多相关文章
- LeetCode:移除K位数字【402】
LeetCode:移除K位数字[402] 题目描述 给定一个以字符串表示的非负整数 num,移除这个数中的 k 位数字,使得剩下的数字最小. 注意: num 的长度小于 10002 且 ≥ k. nu ...
- LeetCode初级算法--设计问题02:最小栈
LeetCode初级算法--设计问题02:最小栈 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn.net ...
- [Winform]关闭窗口使其最小化
摘要 在用户操作关闭窗口的时候,而不是真正的关闭,使其最小化到任务栏,或者托盘. 核心代码 关闭操作,使其最小化到任务栏. private void Form1_Load(object sender, ...
- o(1)取b > a,且b的二进制中1的个数等于a二进制中1的个数,且使b最小
给你一个uint32 a,让你找到另一个uint32 b,使b > a,且b的二进制中1的个数等于a二进制中1的个数.且使b最小.(数据保证可出) 1 因为1的个数不变,所以必然大于n+lowb ...
- 【LeetCode题解】530_二分搜索树的最小绝对值差
目录 [LeetCode题解]530_二分搜索树的最小绝对值差 描述 方法一.中序遍历二分搜索树 思路 Java 代码 Python 代码 [LeetCode题解]530_二分搜索树的最小绝对值差 描 ...
- windows vbs启动多个应用程序并使程序最小化(显示桌面)
windows vbs启动多个应用程序并使程序最小化(显示桌面) CreationTime--2018年7月26日11点18分 Author:Marydon 1.应用场景 每天开机后,都需要打开平 ...
- 前端与算法 leetcode 27.移除元素
目录 # 前端与算法 leetcode 27.移除元素 题目描述 概要 提示 解析 算法 @(目录) # 前端与算法 leetcode 27.移除元素 题目描述 27.移除元素 概要 题目本身其实挺简 ...
- Leetcode(877)-石子游戏
亚历克斯和李用几堆石子在做游戏.偶数堆石子排成一行,每堆都有正整数颗石子 piles[i] . 游戏以谁手中的石子最多来决出胜负.石子的总数是奇数,所以没有平局. 亚历克斯和李轮流进行,亚历克斯先开始 ...
- Leetcode:530. 二叉搜索树的最小绝对差
Leetcode:530. 二叉搜索树的最小绝对差 Leetcode:530. 二叉搜索树的最小绝对差 Talk is cheap . Show me the code . /** * Definit ...
随机推荐
- MySQL-常用的几种修改密码方法
在MySQL中一般常规的给用户修改密码可以用到以下几种方法: 1.使用 mysqladmin命令修改密码 1 mysqladmin -u username -p password "newP ...
- 05-LoadBalancer负载均衡
1.介绍 目前主流的负载方案分为以下两种: 集中式负载均衡,在消费者和服务提供方中间使用独立的代理方式进行负载,有硬件的(比如 F5),也有软件的(比如 Nginx). 客户端根据自己的请求情况做负载 ...
- Chapter03 Java变量
Chapter03 变量 目录 Chapter03 变量 3.1 为什么需要变量 3.1.1 一个程序就是一个世界 3.1.2 变量是程序的基本组成单位 3.1.3 简单原理图 3.2 变(变化)量( ...
- linux 文件查找 find
find 是实时查找工具,通过遍历指定路径完成文件查找 特点: 查找速度略慢 精确查找 实时查找 查找条件丰富 1.对每个目录先处理目录内的文件,再处理目录本身 find /data/test -de ...
- aria2 源码解析专题 —— (二) Exception 部分
首先声明 Exception 部分的几个异常类的继承关系,如下: 这一版的 Exception 部分只有头文件,没有源文件,所以涉及到的更多的只是定义而已,没有太多实现,所以这一部分也简单说说每个类的 ...
- laravel7文件上传至七牛云并保存在本地图片
HTML代码: <form class="layui-form" action="{{route('doctor.store')}}" method=&q ...
- tensorflow源码剖析之framework-kernel
目录 什么是kernel kernel_def op_kernel kernel的注册 op_segment 关系图 涉及的文件 迭代记录 1. 什么是kernel 如果说op相当于操作的声明,那么k ...
- LGP3709题解
题目大意 简化后为区间众数出现次数,简化前为[数据删除] 吐槽 为什么题解只有一篇分块,剩下的全是莫队? 这题不是蒲公英?这和算导例题有何区别??? 为什么现在的人都喜欢去看题解而不注重思维??? 莫 ...
- git命令新建远程分支并推送,切换远程地址
最近记性不好,老是忘记操作命令,记录下一下新建远程分支和切换.删除远程地址的命令: 1.查看当前分支: git branch 2.查看所有分支:git branch -a 3.切换分支:git ch ...
- 监督学习,无监督学习常用算法集合总结,引用scikit-learn库(监督篇)
why写这篇blog 最近在接触这方面的知识,但是找了许多的笔记,都感觉没有很好的总结出来,也正好当做是边学习,边复习着走.大佬轻喷.参考书目<python机器学习基础教程> 将分别从以下 ...