描述


http://www.lydsy.com/JudgeOnline/problem.php?id=1010

给出\(n\)和\(l\).有\(n\)个玩具,第\(i\)个玩具的长度是\(c[i]\),要求将玩具分成若干段,从\(i\)到\(j\)分为一段的长度为\(x=j-i+\sum_{k=i}^jc[k]\),费用为\((x-l)^2\).求最小费用.

分析


用\(dp[i]\)表示前\(i\)个玩具所需的最小费用,则有$$dp[i]=min\{dp[j]+(sum[i]-sum[j]+i-(j+1)-l)^2(1<=j<i)\}$$

其中\(sum[i]\)表示的是\(c[i]\)的前缀和.

为了方便,我们设$$A[i]=sum[i]+i,l=l+1$$

于是原方程久等价于$$dp[i]=min\{dp[j]+(A[i]-A[j]-l)^2(1<=j<i)\}$$

我们设\(j<k<i\)且在计算\(dp[i]\)的时候,决策\(k\)更优.也就是说$$dp[k]+(A[i]-A[k]-l)^2<dp[j]+(A[i]-A[j]-l)^2$$

在纸上写写画画,把式子打开再遍一下形,容易得到$$\frac{[dp[k]+(A[k]+l)^2]-[dp[j]+(A[j]+l)^2]}{2\times{A[k]}-2\times{A[j]}}<A[i]$$

是不是很像$$\frac{Y_k-Y_j}{X_k-X_j}$$的形式?

这玩意儿不就是斜率吗?!我们设它为\(g(k,j)\)

我们可以发现\(A[i]\)是单调递增的,所以所有决策可以转化为二维空间上的点集.

也就是说\(k\)这个点和\(j\)这个点的连线的斜率如果小于\(A[i]\),那么\(k\)这个决策就更优.

那么对于三个决策\(a<b<c\),如果有\(g(c,b)<=g(b,a)\),那么\(b\)决策一定不会被选中.为什么呢?我们来讨论一下(对于任意\(3<i<=n\)):

1.如果\(g(b,a)<A[i]\),那么必有\(g(c,b)<A[i]\),也就是\(c\)最优,选择决策\(c\).

2.如果\(g(b,a)>=A[i]\),那么\(b\)不是最优,最优可能是\(a\)或\(c\).

所以我们在新加入一个点的时候,就可以把它看作\(c\),然后把所有这样的\(b\)都去掉,直到\(g(c,b)>g(b,a)\),所以我们需要处理的斜率是单调递增的.

由于\(A[i]\)是单调递增的,所以对于任意的\(i<n\),如果满足上面的不等式,那么对于任意的\(i',i<i<=n\),由于\(A[i']>A[i]\),所以上不等式仍然成立,所以\(i'\)的最优决策的位置一定不比\(i\)的最优决策小.

这样我们就可以用一个单调队列分别维护队首和队尾啦.

 #include <bits/stdc++.h>
using namespace std; typedef long long ll;
const int maxn=+;
ll n,l,front,tail;
ll sum[maxn],A[maxn],dp[maxn],q[maxn];
inline ll pow_(ll x){ return x*x; }
inline ll up(int k,int j){ return dp[k]-dp[j]+pow_(A[k]+l)-pow_(A[j]+l); }
inline ll dn(int k,int j){ return *(A[k]-A[j]); }
int main(){
scanf("%lld%lld",&n,&l);
l++;
for(int i=;i<=n;i++){
ll t; scanf("%lld",&t);
sum[i]=sum[i-]+t;
A[i]=sum[i]+i;
}
front=,tail=;
for(int i=;i<=n;i++){
while(front+<tail&&up(q[front+],q[front])<=A[i]*dn(q[front+],q[front])) front++;
int j=q[front]; dp[i]=dp[j]+pow_(A[i]-A[j]-l);
while(front+<tail&&up(i,q[tail-])*dn(q[tail-],q[tail-])<=up(q[tail-],q[tail-])*dn(i,q[tail-])) tail--;
q[tail++]=i;
}
printf("%lld\n",dp[n]);
return ;
}

1010: [HNOI2008]玩具装箱toy

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 8864  Solved: 3529
[Submit][Status][Discuss]

Description

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.

Input

  第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

  输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1

HINT

Source

BZOJ_1010_[HNOI2008]_玩具装箱toy_(斜率优化动态规划+单调队列)的更多相关文章

  1. 【BZOJ1010】【HNOI2008】玩具装箱(斜率优化,动态规划)

    [BZOJ1010][HNOI2008]玩具装箱 题面 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...

  2. [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp

    玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...

  3. 【HNOI2008】玩具装箱TOY & 斜率优化学习笔记

    题目 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为 \(1\cdots N\ ...

  4. 【BZOJ1010】【HNOI2008】玩具装箱toy (斜率优化DP) 解题报告

    题目: 题目在这里 思路与做法: 这题不难想. 首先我们先推出一个普通的dp方程: \(f_i = min \{ f_j+(i-j-1+sum_i-sum_j-L)^2\}\) 然后就推一推式子了: ...

  5. BZOJ_1096_[ZJOI2007]_仓库建设_(斜率优化动态规划+单调队列+特殊的前缀和技巧)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1096 有\(n\)个工厂,给出第\(i\)个工厂的到1号工厂的距离\(x[i]\),货物数量\ ...

  6. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  7. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  8. Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...

  9. 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

随机推荐

  1. vmware以及schlumberger题解

    先是vmare的:具体的题目我就不描述了. 1. 贪吃的小明.直接数个数,统计个数,就可以完成.使用map,应该输入implement这一类,我认为很简单,但是我只过了33%. /* ID: y119 ...

  2. [Effective Java读书笔记] 第二章 创建和销毁对象(1~7)

    我的技术博客经常被流氓网站恶意爬取转载.请移步原文:http://www.cnblogs.com/hamhog/p/3537576.html,享受整齐的排版.有效的链接.正确的代码缩进.更好的阅读体验 ...

  3. cics下任务的停止

    cicsterm CEMT I TA TAB==找到要停止的进程 在进程后加入 f或者p 或者fp =========================== 或者找到进程ID号 用命令:kill -9 ...

  4. 在Windows下用Mingw 4.5.2编译X264

    1.下载mingw-get-inst-20110530.rar(http://www.baidu.com/link?url=-ixXW6QiuEl8CA1dKudoWCxzcTvxrpQ0nXRBHU ...

  5. Linux初始root密码设置

    刚安装好的Linux系统是没有设置root用户密码的,下边介绍如何设置root用户的密码 第一步:sudo passwd 第二步:输入密码 第三步:确认密码 这样三个步骤过后root用户的密码就设置好 ...

  6. Web前端新人笔记之height、min-height的区别

     浏览器参照基准:Firefox, Chrome, Safari, Opera, IE: * IE6不支持CSS min-height属性.最小高度的定义:1. 元素拥有默认高度:2. 当内容超出元素 ...

  7. PHP中进制之间的互相转换

    常见的进制: 二进制   binary   ----->  bin 八进制   octal     ----->  oct 十进制   decimal ----->  dec 十六进 ...

  8. node.js里的forEach()也是异步的吗?

    博客已经迁移到www.imyzf.com,本站不再更新,请谅解! node里几乎所有用到回调函数的地方,都是异步的,回调函数后面的代码很可能比回调函数中的代码后先执行,特别是数据库操作.当然,node ...

  9. mysql更改数据文件目录及my.ini位置| MySQL命令详解

    需求:更改mysql数据数据文件目录及my.ini位置. 步骤: 1.查找my.ini位置,可通过windows服务所对应mysql启动项,查看其对应属性->可执行文件路径,获取my.ini路径 ...

  10. Interface的多层继承

    我有一段如下代码,定义一个接口iInterface,cBase实现iInterface,cChild继承cBase,UML为 预期是想要cBase.F()的执行逻辑,同时需要cChild的返回值,所以 ...