Geometric Shapes
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 1470   Accepted: 622

Description

While creating a customer logo, ACM uses graphical utilities to draw a picture that can later be cut into special fluorescent materials. To ensure proper processing, the shapes in the picture cannot intersect. However, some logos contain such intersecting shapes. It is necessary to detect them and decide how to change the picture.

Given a set of geometric shapes, you are to determine all of their intersections. Only outlines are considered, if a shape is completely inside another one, it is not counted as an intersection.

Input

Input contains several pictures. Each picture describes at most 26 shapes, each specified on a separate line. The line begins with an uppercase letter that uniquely identifies the shape inside the corresponding picture. Then there is a kind of the shape and two or more points, everything separated by at least one space. Possible shape kinds are:

• square: Followed by two distinct points giving the opposite corners of the square.
• rectangle: Three points are given, there will always be a right angle between the lines connecting the first point with the second and the second with the third.
• line: Specifies a line segment, two distinct end points are given.
• triangle: Three points are given, they are guaranteed not to be co-linear.
• polygon: Followed by an integer number N (3 ≤ N ≤ 20) and N points specifying vertices of the polygon in either clockwise or anti-clockwise order. The polygon will never intersect itself and its sides will have non-zero length.

All points are always given as two integer coordinates X and Y separated with a comma and enclosed in parentheses. You may assume that |X|, |Y | ≤ 10000.

The picture description is terminated by a line containing a single dash (“-”). After the last picture, there is a line with one dot (“.”).

Output

For each picture, output one line for each of the shapes, sorted alphabetically by its identifier (X). The line must be one of the following:

• “X has no intersections”, if X does not intersect with any other shapes.
• “X intersects with A”, if X intersects with exactly 1 other shape.
• “X intersects with A and B”, if X intersects with exactly 2 other shapes.
• “X intersects with A, B, . . ., and Z”, if X intersects with more than 2 other shapes.

Please note that there is an additional comma for more than two intersections. A, B, etc. are all intersecting shapes, sorted alphabetically.

Print one empty line after each picture, including the last one.

Sample Input

A square (1,2) (3,2)
F line (1,3) (4,4)
W triangle (3,5) (5,5) (4,3)
X triangle (7,2) (7,4) (5,3)
S polygon 6 (9,3) (10,3) (10,4) (8,4) (8,1) (10,2)
B rectangle (3,3) (7,5) (8,3)
-
B square (1,1) (2,2)
A square (3,3) (4,4)
-
.

Sample Output

A has no intersections
B intersects with S, W, and X
F intersects with W
S intersects with B
W intersects with B and F
X intersects with B A has no intersections
B has no intersections

Source

这个题目有个小的知识点就是知道正方形的对角线上的两个点坐标,求出其他两个点,我刚开始是用向量旋转做的,后来觉得一定还有其他的办法,因为正方形比较特殊,后来去网上搜到了可以直接用对角线上的坐标(x0,y0),(x2,y2)来求,对应关系如下:

x1 + x3 = x0 + x2;

x1 - x3 = y2 - y0;

y1 + y3 = y0 + y2;

y3 - y1 = x2 - x0;

求得另一对不相邻的顶点(x1,y1),(x3,y3)。

x1 = (x0 + x2 + y2 - y0) / 2

x3 = (x0 + x2 + y0 - y2) / 2

y1 = (y0 + y2 + x0 - x2) / 2

y3 = (y0 + y2 - x0 + x2) / 2

这样的话其他就没有难点了,就是遍历每个图形,看是否与其他的相交,如果不知道向量如何旋转的,请看http://www.cnblogs.com/Howe-Young/p/4466975.html

/*************************************************************************
> File Name: poj_3449.cpp
> Author: Howe_Young
> Mail: 1013410795@qq.com
> Created Time: 2015年05月01日 星期五 18时38分39秒
************************************************************************/ #include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm> using namespace std;
const int maxn = ;
struct point{
double x, y;
};
struct shape{
char id;
char name[];
point edge[];
char info[maxn];
int index, num;
};
shape s[maxn];
int n, i;
char ch;
void input()
{
s[i].id = ch;
s[i].index = ;
scanf("%s", s[i].name);
if (strcmp(s[i].name, "square") == )
{
scanf(" (%lf, %lf) (%lf, %lf)", &s[i].edge[].x, &s[i].edge[].y, &s[i].edge[].x, &s[i].edge[].y);
s[i].edge[].x = (s[i].edge[].x + s[i].edge[].x + s[i].edge[].y - s[i].edge[].y) / ;
s[i].edge[].y = (s[i].edge[].y + s[i].edge[].y - s[i].edge[].x + s[i].edge[].x) / ;
s[i].edge[].x = (s[i].edge[].x + s[i].edge[].x - s[i].edge[].y + s[i].edge[].y ) / ;
s[i].edge[].y = (s[i].edge[].y + s[i].edge[].y + s[i].edge[].x - s[i].edge[].x) / ;
s[i].num = ;
return;
}
else if (strcmp(s[i].name, "rectangle") == )
{
scanf(" (%lf,%lf) (%lf, %lf) (%lf, %lf)", &s[i].edge[].x, &s[i].edge[].y, &s[i].edge[].x, &s[i].edge[].y, &s[i].edge[].x, &s[i].edge[].y);
s[i].edge[].x = s[i].edge[].x + s[i].edge[].x - s[i].edge[].x;
s[i].edge[].y = s[i].edge[].y + s[i].edge[].y - s[i].edge[].y;
s[i].num = ;
return;
}
else if (strcmp(s[i].name, "line") == )
{
scanf(" (%lf, %lf) (%lf, %lf)", &s[i].edge[].x, &s[i].edge[].y, &s[i].edge[].x, &s[i].edge[].y);
s[i].num = ;
return;
}
else if(strcmp(s[i].name, "triangle") == )
{
scanf(" (%lf, %lf) (%lf, %lf) (%lf, %lf)", &s[i].edge[].x, &s[i].edge[].y, &s[i].edge[].x, &s[i].edge[].y, &s[i].edge[].x, &s[i].edge[].y);
s[i].num = ;
return;
}
else
{
int k;
scanf("%d", &k);
for (int j = ; j < k; j++)
scanf(" (%lf, %lf)", &s[i].edge[j].x, &s[i].edge[j].y);
s[i].num = k;
return;
} }
double x_multi(point p1, point p2, point p3)
{
return (p3.x - p1.x) * (p2.y - p1.y) - (p2.x - p1.x) * (p3.y - p1.y);
}
bool on_segment(point p1, point p2, point p3)
{
double minx, miny, maxx, maxy;
if (p1.x > p2.x)
{
minx = p2.x;
maxx = p1.x;
}
else
{
minx = p1.x;
maxx = p2.x;
}
if (p1.y > p2.y)
{
miny = p2.y;
maxy = p1.y;
}
else
{
maxy = p2.y;
miny = p1.y;
}
return (p3.x >= minx && p3.x <= maxx && p3.y >= miny && p3.y <= maxy);
}
bool segment_intersect(point p1, point p2, point p3, point p4)
{
double d1 = x_multi(p1, p2, p3);
double d2 = x_multi(p1, p2, p4);
double d3 = x_multi(p3, p4, p1);
double d4 = x_multi(p3, p4, p2);
if (d1 * d2 < && d3 * d4 < )
return true;
if (d1 == && on_segment(p1, p2, p3))
return true;
if (d2 == && on_segment(p1, p2, p4))
return true;
if (d3 == && on_segment(p3, p4, p1))
return true;
if (d4 == && on_segment(p3, p4, p2))
return true;
return false;
}
bool intersected(shape a, shape b)
{
for (int p = ; p <= a.num; p++)
{
for (int q = ; q <= b.num; q++)
{
if (segment_intersect(a.edge[p - ], a.edge[p % a.num], b.edge[q - ], b.edge[q % b.num]))
{
return true;
}
}
}
return false;
}
bool cmp1(const shape a, const shape b)
{
return a.id < b.id;
}
bool cmp2(const char a, const char b)
{
return a < b;
}
void output(shape a)
{
if (a.index == )
{
printf("%c has no intersections\n", a.id);
return;
}
if (a.index == )
{
printf("%c intersects with %c\n", a.id, a.info[]);
return;
}
if (a.index == )
{
printf("%c intersects with %c and %c\n", a.id, a.info[], a.info[]);
return;
}
printf("%c intersects with %c, ", a.id, a.info[]);
for (int t = ; t < a.index - ; t++)
printf("%c, ", a.info[t]);
printf("and %c\n", a.info[a.index - ]); }
int main()
{
while (cin >> ch && ch != '.')
{
memset(s, , sizeof(s));
i = ;
if (ch == '-')
continue;
input();
while (cin >> ch)
{
i++;
if (ch == '-')
break;
input();
}
n = i;
for (int t = ; t < n; t++)
{
for (int j = t + ; j < n; j++)
{
if (intersected(s[t], s[j]))
{
s[t].info[s[t].index++] = s[j].id;
s[j].info[s[j].index++] = s[t].id;
}
}
}
sort(s, s + n, cmp1);
for (int t = ; t < n; t++)
{
sort(s[t].info, s[t].info + s[t].index, cmp2);
output(s[t]);
}
puts("");
}
return ;
}

POJ 3449 Geometric Shapes (求正方形的另外两点)的更多相关文章

  1. POJ 3449 Geometric Shapes(判断几个不同图形的相交,线段相交判断)

    Geometric Shapes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1243   Accepted: 524 D ...

  2. POJ 3449 Geometric Shapes --计算几何,线段相交

    题意: 给一些多边形或线段,输出与每一个多边形或线段的有哪一些多边形或线段. 解法: 想法不难,直接暴力将所有的图形处理成线段,然后暴力枚举,相交就加入其vector就行了.主要是代码有点麻烦,一步一 ...

  3. POJ 3449 Geometric Shapes 判断多边形相交

    题意不难理解,给出多个多边形,输出多边形间的相交情况(嵌套不算相交),思路也很容易想到.枚举每一个图形再枚举每一条边 恶心在输入输出,不过还好有sscanf(),不懂可以查看cplusplus网站 根 ...

  4. 简单几何(线段相交)+模拟 POJ 3449 Geometric Shapes

    题目传送门 题意:给了若干个图形,问每个图形与哪些图形相交 分析:题目说白了就是处理出每个图形的线段,然后判断是否相交.但是读入输出巨恶心,就是个模拟题加上线段相交的判断,我第一次WA不知道输出要按字 ...

  5. POJ 3449 Geometric Shapes

    判断两个多边形是否相交,只需判断边是否有相交. 编码量有点大,不过思路挺简单的. #include<cstdio> #include<cstring> #include< ...

  6. TZOJ 2560 Geometric Shapes(判断多边形是否相交)

    描述 While creating a customer logo, ACM uses graphical utilities to draw a picture that can later be ...

  7. poj3449 Geometric Shapes【计算几何】

    含[判断线段相交].[判断两点在线段两侧].[判断三点共线].[判断点在线段上]模板   Geometric Shapes Time Limit: 2000MS   Memory Limit: 655 ...

  8. poj 1474 Video Surveillance - 求多边形有没有核

    /* poj 1474 Video Surveillance - 求多边形有没有核 */ #include <stdio.h> #include<math.h> const d ...

  9. poj 1279 Art Gallery - 求多边形核的面积

    /* poj 1279 Art Gallery - 求多边形核的面积 */ #include<stdio.h> #include<math.h> #include <al ...

随机推荐

  1. redis 服务器端命令

    redis 127.0.0.1:6380> time ,显示服务器时间, 时间戳(秒), 微秒数 1) "1375270361" 2) "504511" ...

  2. django访问sqlserver中的坑

    首先不用说先安装django-sqlserver    pip install django-sqlserver 然后在settings.py中修改'ENGINE': 'sqlserver_ado', ...

  3. bzoj1662: [Usaco2006 Nov]Round Numbers 圆环数

    Description 正如你所知,奶牛们没有手指以至于不能玩“石头剪刀布”来任意地决定例如谁先挤奶的顺序.她们甚至也不能通过仍硬币的方式. 所以她们通过"round number" ...

  4. bzoj3141: [Hnoi2013]旅行

    Description   Input 第 一行为两个空格隔开的正整数n, m,表示旅行的城市数与旅行所花的月数.接下来n行,其中第 i行包含两个空格隔开的整数Ai和Bi,Ai表示他第i个去的城市编号 ...

  5. 【RabbitMQ】 Routing

    Routing 之前的章节里我们构建了一个简单的日志系统.我们可以广播所有的日志消息给所有的接收端. 本节我们将给它添加一个新特性 - 我们将允许只订阅一个消息的子集.例如,我们只将关键的错误消息定位 ...

  6. 关于pcre正则表达式库libpcre

    gcc 4.8中已经包含了std regex的头文件 可是没有实现,所以链接是失败的 gcc 4.9完整的支持了c++ 11的regex. 在4.9以前,可以寻求boost的regex. 不过,我更熟 ...

  7. hadoop如何计算map数和reduce数(未读)

    http://blog.csdn.net/lpxuan151009/article/details/7937821

  8. 物联网传输协议MQTT

    MQTT是一个物联网传输协议,它被设计用于轻量级的发布/订阅式消息传输,旨在为低带宽和不稳定的网络环境中的物联网设备提供可靠的网络服务.MQTT是专门针对物联网开发的轻量级传输协议.MQTT协议针对低 ...

  9. tomcat服务器报Server at localhost was unable to start within 45 seconds的问题

    今天在同一个tomcat服务器下部署了2个不同的应用程序,然后启动时报错:Server at localhost was unable to start within 45 seconds.If th ...

  10. c# 循环语句练习题;

    1. 求100以内质数的和 2. 兔子问题 3. 九九乘法表:   一行一行打印: 4. 有一张超大的纸:   纸质的厚度是0.01:   对折多少次,可以达到珠峰的高度:   按照8848来计算: ...