POJ 3449 Geometric Shapes (求正方形的另外两点)
Geometric Shapes
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 1470 Accepted: 622 Description
While creating a customer logo, ACM uses graphical utilities to draw a picture that can later be cut into special fluorescent materials. To ensure proper processing, the shapes in the picture cannot intersect. However, some logos contain such intersecting shapes. It is necessary to detect them and decide how to change the picture.
Given a set of geometric shapes, you are to determine all of their intersections. Only outlines are considered, if a shape is completely inside another one, it is not counted as an intersection.
Input
Input contains several pictures. Each picture describes at most 26 shapes, each specified on a separate line. The line begins with an uppercase letter that uniquely identifies the shape inside the corresponding picture. Then there is a kind of the shape and two or more points, everything separated by at least one space. Possible shape kinds are:
• square: Followed by two distinct points giving the opposite corners of the square.
• rectangle: Three points are given, there will always be a right angle between the lines connecting the first point with the second and the second with the third.
• line: Specifies a line segment, two distinct end points are given.
• triangle: Three points are given, they are guaranteed not to be co-linear.
• polygon: Followed by an integer number N (3 ≤ N ≤ 20) and N points specifying vertices of the polygon in either clockwise or anti-clockwise order. The polygon will never intersect itself and its sides will have non-zero length.All points are always given as two integer coordinates X and Y separated with a comma and enclosed in parentheses. You may assume that |X|, |Y | ≤ 10000.
The picture description is terminated by a line containing a single dash (“-”). After the last picture, there is a line with one dot (“.”).
Output
For each picture, output one line for each of the shapes, sorted alphabetically by its identifier (X). The line must be one of the following:
• “X has no intersections”, if X does not intersect with any other shapes.
• “X intersects with A”, if X intersects with exactly 1 other shape.
• “X intersects with A and B”, if X intersects with exactly 2 other shapes.
• “X intersects with A, B, . . ., and Z”, if X intersects with more than 2 other shapes.Please note that there is an additional comma for more than two intersections. A, B, etc. are all intersecting shapes, sorted alphabetically.
Print one empty line after each picture, including the last one.
Sample Input
A square (1,2) (3,2)
F line (1,3) (4,4)
W triangle (3,5) (5,5) (4,3)
X triangle (7,2) (7,4) (5,3)
S polygon 6 (9,3) (10,3) (10,4) (8,4) (8,1) (10,2)
B rectangle (3,3) (7,5) (8,3)
-
B square (1,1) (2,2)
A square (3,3) (4,4)
-
.Sample Output
A has no intersections
B intersects with S, W, and X
F intersects with W
S intersects with B
W intersects with B and F
X intersects with B A has no intersections
B has no intersectionsSource
这个题目有个小的知识点就是知道正方形的对角线上的两个点坐标,求出其他两个点,我刚开始是用向量旋转做的,后来觉得一定还有其他的办法,因为正方形比较特殊,后来去网上搜到了可以直接用对角线上的坐标(x0,y0),(x2,y2)来求,对应关系如下:
x1 + x3 = x0 + x2;
x1 - x3 = y2 - y0;
y1 + y3 = y0 + y2;
y3 - y1 = x2 - x0;
求得另一对不相邻的顶点(x1,y1),(x3,y3)。
x1 = (x0 + x2 + y2 - y0) / 2
x3 = (x0 + x2 + y0 - y2) / 2
y1 = (y0 + y2 + x0 - x2) / 2
y3 = (y0 + y2 - x0 + x2) / 2
这样的话其他就没有难点了,就是遍历每个图形,看是否与其他的相交,如果不知道向量如何旋转的,请看http://www.cnblogs.com/Howe-Young/p/4466975.html
/*************************************************************************
> File Name: poj_3449.cpp
> Author: Howe_Young
> Mail: 1013410795@qq.com
> Created Time: 2015年05月01日 星期五 18时38分39秒
************************************************************************/ #include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm> using namespace std;
const int maxn = ;
struct point{
double x, y;
};
struct shape{
char id;
char name[];
point edge[];
char info[maxn];
int index, num;
};
shape s[maxn];
int n, i;
char ch;
void input()
{
s[i].id = ch;
s[i].index = ;
scanf("%s", s[i].name);
if (strcmp(s[i].name, "square") == )
{
scanf(" (%lf, %lf) (%lf, %lf)", &s[i].edge[].x, &s[i].edge[].y, &s[i].edge[].x, &s[i].edge[].y);
s[i].edge[].x = (s[i].edge[].x + s[i].edge[].x + s[i].edge[].y - s[i].edge[].y) / ;
s[i].edge[].y = (s[i].edge[].y + s[i].edge[].y - s[i].edge[].x + s[i].edge[].x) / ;
s[i].edge[].x = (s[i].edge[].x + s[i].edge[].x - s[i].edge[].y + s[i].edge[].y ) / ;
s[i].edge[].y = (s[i].edge[].y + s[i].edge[].y + s[i].edge[].x - s[i].edge[].x) / ;
s[i].num = ;
return;
}
else if (strcmp(s[i].name, "rectangle") == )
{
scanf(" (%lf,%lf) (%lf, %lf) (%lf, %lf)", &s[i].edge[].x, &s[i].edge[].y, &s[i].edge[].x, &s[i].edge[].y, &s[i].edge[].x, &s[i].edge[].y);
s[i].edge[].x = s[i].edge[].x + s[i].edge[].x - s[i].edge[].x;
s[i].edge[].y = s[i].edge[].y + s[i].edge[].y - s[i].edge[].y;
s[i].num = ;
return;
}
else if (strcmp(s[i].name, "line") == )
{
scanf(" (%lf, %lf) (%lf, %lf)", &s[i].edge[].x, &s[i].edge[].y, &s[i].edge[].x, &s[i].edge[].y);
s[i].num = ;
return;
}
else if(strcmp(s[i].name, "triangle") == )
{
scanf(" (%lf, %lf) (%lf, %lf) (%lf, %lf)", &s[i].edge[].x, &s[i].edge[].y, &s[i].edge[].x, &s[i].edge[].y, &s[i].edge[].x, &s[i].edge[].y);
s[i].num = ;
return;
}
else
{
int k;
scanf("%d", &k);
for (int j = ; j < k; j++)
scanf(" (%lf, %lf)", &s[i].edge[j].x, &s[i].edge[j].y);
s[i].num = k;
return;
} }
double x_multi(point p1, point p2, point p3)
{
return (p3.x - p1.x) * (p2.y - p1.y) - (p2.x - p1.x) * (p3.y - p1.y);
}
bool on_segment(point p1, point p2, point p3)
{
double minx, miny, maxx, maxy;
if (p1.x > p2.x)
{
minx = p2.x;
maxx = p1.x;
}
else
{
minx = p1.x;
maxx = p2.x;
}
if (p1.y > p2.y)
{
miny = p2.y;
maxy = p1.y;
}
else
{
maxy = p2.y;
miny = p1.y;
}
return (p3.x >= minx && p3.x <= maxx && p3.y >= miny && p3.y <= maxy);
}
bool segment_intersect(point p1, point p2, point p3, point p4)
{
double d1 = x_multi(p1, p2, p3);
double d2 = x_multi(p1, p2, p4);
double d3 = x_multi(p3, p4, p1);
double d4 = x_multi(p3, p4, p2);
if (d1 * d2 < && d3 * d4 < )
return true;
if (d1 == && on_segment(p1, p2, p3))
return true;
if (d2 == && on_segment(p1, p2, p4))
return true;
if (d3 == && on_segment(p3, p4, p1))
return true;
if (d4 == && on_segment(p3, p4, p2))
return true;
return false;
}
bool intersected(shape a, shape b)
{
for (int p = ; p <= a.num; p++)
{
for (int q = ; q <= b.num; q++)
{
if (segment_intersect(a.edge[p - ], a.edge[p % a.num], b.edge[q - ], b.edge[q % b.num]))
{
return true;
}
}
}
return false;
}
bool cmp1(const shape a, const shape b)
{
return a.id < b.id;
}
bool cmp2(const char a, const char b)
{
return a < b;
}
void output(shape a)
{
if (a.index == )
{
printf("%c has no intersections\n", a.id);
return;
}
if (a.index == )
{
printf("%c intersects with %c\n", a.id, a.info[]);
return;
}
if (a.index == )
{
printf("%c intersects with %c and %c\n", a.id, a.info[], a.info[]);
return;
}
printf("%c intersects with %c, ", a.id, a.info[]);
for (int t = ; t < a.index - ; t++)
printf("%c, ", a.info[t]);
printf("and %c\n", a.info[a.index - ]); }
int main()
{
while (cin >> ch && ch != '.')
{
memset(s, , sizeof(s));
i = ;
if (ch == '-')
continue;
input();
while (cin >> ch)
{
i++;
if (ch == '-')
break;
input();
}
n = i;
for (int t = ; t < n; t++)
{
for (int j = t + ; j < n; j++)
{
if (intersected(s[t], s[j]))
{
s[t].info[s[t].index++] = s[j].id;
s[j].info[s[j].index++] = s[t].id;
}
}
}
sort(s, s + n, cmp1);
for (int t = ; t < n; t++)
{
sort(s[t].info, s[t].info + s[t].index, cmp2);
output(s[t]);
}
puts("");
}
return ;
}
POJ 3449 Geometric Shapes (求正方形的另外两点)的更多相关文章
- POJ 3449 Geometric Shapes(判断几个不同图形的相交,线段相交判断)
Geometric Shapes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 1243 Accepted: 524 D ...
- POJ 3449 Geometric Shapes --计算几何,线段相交
题意: 给一些多边形或线段,输出与每一个多边形或线段的有哪一些多边形或线段. 解法: 想法不难,直接暴力将所有的图形处理成线段,然后暴力枚举,相交就加入其vector就行了.主要是代码有点麻烦,一步一 ...
- POJ 3449 Geometric Shapes 判断多边形相交
题意不难理解,给出多个多边形,输出多边形间的相交情况(嵌套不算相交),思路也很容易想到.枚举每一个图形再枚举每一条边 恶心在输入输出,不过还好有sscanf(),不懂可以查看cplusplus网站 根 ...
- 简单几何(线段相交)+模拟 POJ 3449 Geometric Shapes
题目传送门 题意:给了若干个图形,问每个图形与哪些图形相交 分析:题目说白了就是处理出每个图形的线段,然后判断是否相交.但是读入输出巨恶心,就是个模拟题加上线段相交的判断,我第一次WA不知道输出要按字 ...
- POJ 3449 Geometric Shapes
判断两个多边形是否相交,只需判断边是否有相交. 编码量有点大,不过思路挺简单的. #include<cstdio> #include<cstring> #include< ...
- TZOJ 2560 Geometric Shapes(判断多边形是否相交)
描述 While creating a customer logo, ACM uses graphical utilities to draw a picture that can later be ...
- poj3449 Geometric Shapes【计算几何】
含[判断线段相交].[判断两点在线段两侧].[判断三点共线].[判断点在线段上]模板 Geometric Shapes Time Limit: 2000MS Memory Limit: 655 ...
- poj 1474 Video Surveillance - 求多边形有没有核
/* poj 1474 Video Surveillance - 求多边形有没有核 */ #include <stdio.h> #include<math.h> const d ...
- poj 1279 Art Gallery - 求多边形核的面积
/* poj 1279 Art Gallery - 求多边形核的面积 */ #include<stdio.h> #include<math.h> #include <al ...
随机推荐
- php把文件上传到远程服务器上例子
在这里我们利用curl实现把本地服务器的文件通过curl发送请求给远程服务器的php文件接受就实现了上传,还一个是利用ftp来上传方法也是php中的curl操作ftp服务器进行上传. 我这里写的是用c ...
- java 多线程sleep和wait的区别
对于sleep()方法,我们首先要知道该方法是属于Thread类中的.而wait()方法,则是属于Object类中的. sleep()方法导致了程序暂停执行指定的时间,让出cpu该其他线程,但是他的监 ...
- sdk manager更新失败,显示Download interrupted: read timed out,应该如何解决?
今天开始第一天学习Android,就遇到一个大问题.sdk manager无法自动更新,总在提示超时!!! 经过网上查询发现问题原因是. 在利用android sdk manager更新时失败,具体情 ...
- objective-c 错题
//1, NSString *name = [[NSString alloc]initWithString:@"张三"]; NSLog(@"%d",[name ...
- NSSet与NSArray区别
NSSet与NSArray区别 NSSet到底什么类型,其实它和NSArray功能性质一样,用于存储对象,属于集合: NSSet , NSMutableSet类声明编程接口对象,无序的集合, ...
- 【Java】Java垃圾回收机制
Java垃圾回收机制 说到垃圾回收(Garbage Collection,GC),很多人就会自然而然地把它和Java联系起来.在Java中,程序员不需要去关心内存动态分配和垃圾回收的问题,这一切都交给 ...
- Crashing Robots
Description In a modernized warehouse, robots are used to fetch the goods. Careful planning is neede ...
- 把消息送到默认窗口函数里,并非一点用都没有,可能会产生新的消息(以WM_WINDOWPOSCHANGED为例)
我在追踪执行: procedure TForm1.Button1Click(Sender: TObject); begin panel1.Left:=panel1.Left-; end; 并且屏蔽TW ...
- Linux Shell编程(5)——shell特殊字符(下)
{}代码块[花括号]. 这个结构也是一组命令代码块,事实上,它是匿名的函数.然而与一个函数所不同的,在代码块里的变量仍然能被脚本后面的代码访问. bash$ { local a; a=123 ...
- 工作中常用的QTP操作Excel函数
前言 本文只是对工作中常用的EOM相关函数的整理,并不是要写个大而全的操作手册,如果想对EOM有更多的了解可以参考QTP的帮助文档或查看QTP安装目录\CodeSamplesPlus\UsingExc ...