Geometric Shapes
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 1470   Accepted: 622

Description

While creating a customer logo, ACM uses graphical utilities to draw a picture that can later be cut into special fluorescent materials. To ensure proper processing, the shapes in the picture cannot intersect. However, some logos contain such intersecting shapes. It is necessary to detect them and decide how to change the picture.

Given a set of geometric shapes, you are to determine all of their intersections. Only outlines are considered, if a shape is completely inside another one, it is not counted as an intersection.

Input

Input contains several pictures. Each picture describes at most 26 shapes, each specified on a separate line. The line begins with an uppercase letter that uniquely identifies the shape inside the corresponding picture. Then there is a kind of the shape and two or more points, everything separated by at least one space. Possible shape kinds are:

• square: Followed by two distinct points giving the opposite corners of the square.
• rectangle: Three points are given, there will always be a right angle between the lines connecting the first point with the second and the second with the third.
• line: Specifies a line segment, two distinct end points are given.
• triangle: Three points are given, they are guaranteed not to be co-linear.
• polygon: Followed by an integer number N (3 ≤ N ≤ 20) and N points specifying vertices of the polygon in either clockwise or anti-clockwise order. The polygon will never intersect itself and its sides will have non-zero length.

All points are always given as two integer coordinates X and Y separated with a comma and enclosed in parentheses. You may assume that |X|, |Y | ≤ 10000.

The picture description is terminated by a line containing a single dash (“-”). After the last picture, there is a line with one dot (“.”).

Output

For each picture, output one line for each of the shapes, sorted alphabetically by its identifier (X). The line must be one of the following:

• “X has no intersections”, if X does not intersect with any other shapes.
• “X intersects with A”, if X intersects with exactly 1 other shape.
• “X intersects with A and B”, if X intersects with exactly 2 other shapes.
• “X intersects with A, B, . . ., and Z”, if X intersects with more than 2 other shapes.

Please note that there is an additional comma for more than two intersections. A, B, etc. are all intersecting shapes, sorted alphabetically.

Print one empty line after each picture, including the last one.

Sample Input

A square (1,2) (3,2)
F line (1,3) (4,4)
W triangle (3,5) (5,5) (4,3)
X triangle (7,2) (7,4) (5,3)
S polygon 6 (9,3) (10,3) (10,4) (8,4) (8,1) (10,2)
B rectangle (3,3) (7,5) (8,3)
-
B square (1,1) (2,2)
A square (3,3) (4,4)
-
.

Sample Output

A has no intersections
B intersects with S, W, and X
F intersects with W
S intersects with B
W intersects with B and F
X intersects with B A has no intersections
B has no intersections

Source

这个题目有个小的知识点就是知道正方形的对角线上的两个点坐标,求出其他两个点,我刚开始是用向量旋转做的,后来觉得一定还有其他的办法,因为正方形比较特殊,后来去网上搜到了可以直接用对角线上的坐标(x0,y0),(x2,y2)来求,对应关系如下:

x1 + x3 = x0 + x2;

x1 - x3 = y2 - y0;

y1 + y3 = y0 + y2;

y3 - y1 = x2 - x0;

求得另一对不相邻的顶点(x1,y1),(x3,y3)。

x1 = (x0 + x2 + y2 - y0) / 2

x3 = (x0 + x2 + y0 - y2) / 2

y1 = (y0 + y2 + x0 - x2) / 2

y3 = (y0 + y2 - x0 + x2) / 2

这样的话其他就没有难点了,就是遍历每个图形,看是否与其他的相交,如果不知道向量如何旋转的,请看http://www.cnblogs.com/Howe-Young/p/4466975.html

/*************************************************************************
> File Name: poj_3449.cpp
> Author: Howe_Young
> Mail: 1013410795@qq.com
> Created Time: 2015年05月01日 星期五 18时38分39秒
************************************************************************/ #include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm> using namespace std;
const int maxn = ;
struct point{
double x, y;
};
struct shape{
char id;
char name[];
point edge[];
char info[maxn];
int index, num;
};
shape s[maxn];
int n, i;
char ch;
void input()
{
s[i].id = ch;
s[i].index = ;
scanf("%s", s[i].name);
if (strcmp(s[i].name, "square") == )
{
scanf(" (%lf, %lf) (%lf, %lf)", &s[i].edge[].x, &s[i].edge[].y, &s[i].edge[].x, &s[i].edge[].y);
s[i].edge[].x = (s[i].edge[].x + s[i].edge[].x + s[i].edge[].y - s[i].edge[].y) / ;
s[i].edge[].y = (s[i].edge[].y + s[i].edge[].y - s[i].edge[].x + s[i].edge[].x) / ;
s[i].edge[].x = (s[i].edge[].x + s[i].edge[].x - s[i].edge[].y + s[i].edge[].y ) / ;
s[i].edge[].y = (s[i].edge[].y + s[i].edge[].y + s[i].edge[].x - s[i].edge[].x) / ;
s[i].num = ;
return;
}
else if (strcmp(s[i].name, "rectangle") == )
{
scanf(" (%lf,%lf) (%lf, %lf) (%lf, %lf)", &s[i].edge[].x, &s[i].edge[].y, &s[i].edge[].x, &s[i].edge[].y, &s[i].edge[].x, &s[i].edge[].y);
s[i].edge[].x = s[i].edge[].x + s[i].edge[].x - s[i].edge[].x;
s[i].edge[].y = s[i].edge[].y + s[i].edge[].y - s[i].edge[].y;
s[i].num = ;
return;
}
else if (strcmp(s[i].name, "line") == )
{
scanf(" (%lf, %lf) (%lf, %lf)", &s[i].edge[].x, &s[i].edge[].y, &s[i].edge[].x, &s[i].edge[].y);
s[i].num = ;
return;
}
else if(strcmp(s[i].name, "triangle") == )
{
scanf(" (%lf, %lf) (%lf, %lf) (%lf, %lf)", &s[i].edge[].x, &s[i].edge[].y, &s[i].edge[].x, &s[i].edge[].y, &s[i].edge[].x, &s[i].edge[].y);
s[i].num = ;
return;
}
else
{
int k;
scanf("%d", &k);
for (int j = ; j < k; j++)
scanf(" (%lf, %lf)", &s[i].edge[j].x, &s[i].edge[j].y);
s[i].num = k;
return;
} }
double x_multi(point p1, point p2, point p3)
{
return (p3.x - p1.x) * (p2.y - p1.y) - (p2.x - p1.x) * (p3.y - p1.y);
}
bool on_segment(point p1, point p2, point p3)
{
double minx, miny, maxx, maxy;
if (p1.x > p2.x)
{
minx = p2.x;
maxx = p1.x;
}
else
{
minx = p1.x;
maxx = p2.x;
}
if (p1.y > p2.y)
{
miny = p2.y;
maxy = p1.y;
}
else
{
maxy = p2.y;
miny = p1.y;
}
return (p3.x >= minx && p3.x <= maxx && p3.y >= miny && p3.y <= maxy);
}
bool segment_intersect(point p1, point p2, point p3, point p4)
{
double d1 = x_multi(p1, p2, p3);
double d2 = x_multi(p1, p2, p4);
double d3 = x_multi(p3, p4, p1);
double d4 = x_multi(p3, p4, p2);
if (d1 * d2 < && d3 * d4 < )
return true;
if (d1 == && on_segment(p1, p2, p3))
return true;
if (d2 == && on_segment(p1, p2, p4))
return true;
if (d3 == && on_segment(p3, p4, p1))
return true;
if (d4 == && on_segment(p3, p4, p2))
return true;
return false;
}
bool intersected(shape a, shape b)
{
for (int p = ; p <= a.num; p++)
{
for (int q = ; q <= b.num; q++)
{
if (segment_intersect(a.edge[p - ], a.edge[p % a.num], b.edge[q - ], b.edge[q % b.num]))
{
return true;
}
}
}
return false;
}
bool cmp1(const shape a, const shape b)
{
return a.id < b.id;
}
bool cmp2(const char a, const char b)
{
return a < b;
}
void output(shape a)
{
if (a.index == )
{
printf("%c has no intersections\n", a.id);
return;
}
if (a.index == )
{
printf("%c intersects with %c\n", a.id, a.info[]);
return;
}
if (a.index == )
{
printf("%c intersects with %c and %c\n", a.id, a.info[], a.info[]);
return;
}
printf("%c intersects with %c, ", a.id, a.info[]);
for (int t = ; t < a.index - ; t++)
printf("%c, ", a.info[t]);
printf("and %c\n", a.info[a.index - ]); }
int main()
{
while (cin >> ch && ch != '.')
{
memset(s, , sizeof(s));
i = ;
if (ch == '-')
continue;
input();
while (cin >> ch)
{
i++;
if (ch == '-')
break;
input();
}
n = i;
for (int t = ; t < n; t++)
{
for (int j = t + ; j < n; j++)
{
if (intersected(s[t], s[j]))
{
s[t].info[s[t].index++] = s[j].id;
s[j].info[s[j].index++] = s[t].id;
}
}
}
sort(s, s + n, cmp1);
for (int t = ; t < n; t++)
{
sort(s[t].info, s[t].info + s[t].index, cmp2);
output(s[t]);
}
puts("");
}
return ;
}

POJ 3449 Geometric Shapes (求正方形的另外两点)的更多相关文章

  1. POJ 3449 Geometric Shapes(判断几个不同图形的相交,线段相交判断)

    Geometric Shapes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1243   Accepted: 524 D ...

  2. POJ 3449 Geometric Shapes --计算几何,线段相交

    题意: 给一些多边形或线段,输出与每一个多边形或线段的有哪一些多边形或线段. 解法: 想法不难,直接暴力将所有的图形处理成线段,然后暴力枚举,相交就加入其vector就行了.主要是代码有点麻烦,一步一 ...

  3. POJ 3449 Geometric Shapes 判断多边形相交

    题意不难理解,给出多个多边形,输出多边形间的相交情况(嵌套不算相交),思路也很容易想到.枚举每一个图形再枚举每一条边 恶心在输入输出,不过还好有sscanf(),不懂可以查看cplusplus网站 根 ...

  4. 简单几何(线段相交)+模拟 POJ 3449 Geometric Shapes

    题目传送门 题意:给了若干个图形,问每个图形与哪些图形相交 分析:题目说白了就是处理出每个图形的线段,然后判断是否相交.但是读入输出巨恶心,就是个模拟题加上线段相交的判断,我第一次WA不知道输出要按字 ...

  5. POJ 3449 Geometric Shapes

    判断两个多边形是否相交,只需判断边是否有相交. 编码量有点大,不过思路挺简单的. #include<cstdio> #include<cstring> #include< ...

  6. TZOJ 2560 Geometric Shapes(判断多边形是否相交)

    描述 While creating a customer logo, ACM uses graphical utilities to draw a picture that can later be ...

  7. poj3449 Geometric Shapes【计算几何】

    含[判断线段相交].[判断两点在线段两侧].[判断三点共线].[判断点在线段上]模板   Geometric Shapes Time Limit: 2000MS   Memory Limit: 655 ...

  8. poj 1474 Video Surveillance - 求多边形有没有核

    /* poj 1474 Video Surveillance - 求多边形有没有核 */ #include <stdio.h> #include<math.h> const d ...

  9. poj 1279 Art Gallery - 求多边形核的面积

    /* poj 1279 Art Gallery - 求多边形核的面积 */ #include<stdio.h> #include<math.h> #include <al ...

随机推荐

  1. bootstrap日期时间插件datetimepicker

    <!DOCTYPE HTML> 02 <html> 03   <head> 04     <link href="http://netdna.boo ...

  2. IOS开发备忘

    1. ios 真机调试时出现CopyPngFile error解决方法 说是读取的时候没有找到这张图片,检查了一下图片路径,没有问题,于是google之,找到两种解决方法 : 方法一:在build s ...

  3. python【第八篇】socket网络编程

    内容大纲 1.socke基础 两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个socket. 建 立网络通信连接至少要一对端口号(socket).socket本质是编程接口(API ...

  4. SharePoint 设置Lookup 字段的值

    如何设置Lookup字段的值, 首先我们同样需要了解SPFieldLookupValueCollection和SPFieldLookupValue, 这2个类的原理和之前所讲解到SPFieldUser ...

  5. bzoj3583: 杰杰的女性朋友 && 4362: Graph

    Description 给出一张n个点的有向图G(V,E).对于任意两个点u,v(u可以等于v),u向v的连边数为: ∑OUT(u,i) * IN(v,i),其中1<=i<=K 其中k和数 ...

  6. Java线程生命模型

    一. 线程状态类型1. 新建状态(New):新创建了一个线程对象.2. 就绪状态(Runnable):线程对象创建后,其他线程调用了该对象的start()方法.该状态的线程位于可运行线程池中,变得可运 ...

  7. adb设备,根据serial获取vid pid

    使用adb devices命令,可以轻松获取到所有连接到PC的adb设备的serial值. 但是adb命令无法获取adb usb设备的vendor id和product id. 本程序根据adb协议, ...

  8. js 返回前一页并刷新页面方法

    [导读] 要返回上一页再刷新页面我们用到最多的是在像php,asp,jsp,asp.net中,下面我来给大家先介绍js 返回前一页并刷新页面,然后再把这些代码放在php中实现删除后返回当前页面并刷新页 ...

  9. BZOJ 1033 杀蚂蚁

    Description 最近,佳佳迷上了一款好玩的小游戏:antbuster.游戏规则非常简单:在一张地图上,左上角是蚂蚁窝,右下角是蛋糕,蚂蚁会源源不断地从窝里爬出来,试图把蛋糕搬回蚂蚁窝.而你的任 ...

  10. Hotel

    poj3667:http://poj.org/problem?id=3667 题目大意:Hotel有N(1 ≤ N ≤ 50,000)间rooms,并且所有的rooms都是连续排列在同一边,group ...