The Bottom of a Graph
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 9641   Accepted: 4008

Description

We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph. 
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in Gand we say that vn+1 is reachable from v1, writing (v1→vn+1)
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from vv is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

Input

The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

Output

For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

Sample Input

3 3
1 3 2 3 3 1
2 1
1 2
0

Sample Output

1 3
2

定义:点v是汇点须满足 --- 对图中任意点u,若v可以到达u则必有u到v的路径;若v不可以到达u,则u到v的路径可有可无。
题意:在n个点m条边的有向图里面,问有多少个点是汇点。
分析:首先若SCC里面有一个点不是汇点,那么它们全不是汇点,反之也如此。这也就意味着一个SCC里面的点要么全是,要么全不是。在求出SCC并缩点后,任一个编号为A的SCC若存在指向编号为B的SCC的边,那么它里面所有点必不是汇点(因为编号为B的SCC不可能存在指向编号为A的SCC的边)。若编号为A的SCC没有到达其他SCC的路径,那么该SCC里面所有点必是汇点。因此判断的关键在于SCC的出度是否为0.
思路:先用tarjan求出所有SCC,然后缩点后找出所有出度为0的SCC,并用数字存储点,升序排列后输出。
#include<stdio.h>
#include<string.h>
#include<vector>
#include<stack>
#include<algorithm>
#define MAX 21000
#define INF 0x3f3f3f
using namespace std;
int cost[MAX];
int low[MAX],dfn[MAX];
int head[MAX],instack[MAX];
int ans,n,m;
int sccno[MAX],clock;//sccno用来记录当前点属于哪个scc,
int scccnt;//记录总共有多少个scc
stack<int>s;
vector<int>newmap[MAX];//scc缩点之后储存新图
vector<int>scc[MAX];//用来记录scc中的点
int out[MAX];//记录scc的入度
int ant[MAX];
struct node
{
int beg,end,next;
}edge[MAX];
void init()
{
memset(head,-1,sizeof(head));
ans=0;
}
void add(int u,int v)
{
edge[ans].beg=u;
edge[ans].end=v;
edge[ans].next=head[u];
head[u]=ans++;
}
void getmap()
{
int i,j,a,b;
for(i=1;i<=m;i++)
{
scanf("%d%d",&a,&b);
add(a,b);
}
}
void tarjan(int u)
{
int v,i,j;
low[u]=dfn[u]=++clock;
s.push(u);
instack[u]=1;
for(i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].end;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
scccnt++;
scc[scccnt].clear();//??
while(1)
{
v=s.top();
s.pop();
instack[v]=0;
sccno[v]=scccnt;
scc[scccnt].push_back(v);
if(v==u)
break;
}
}
}
void find(int l,int r)
{
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(sccno,0,sizeof(sccno));
memset(instack,0,sizeof(instack));
clock=scccnt=0;
for(int i=l;i<=r;i++)
{
if(!dfn[i])
tarjan(i);
}
}
void suodian()
{
int i,j;
for(i=1;i<=scccnt;i++)
{
newmap[i].clear();
out[i]=0;
}
for(i=0;i<ans;i++)//遍历所有的边
{
int u=sccno[edge[i].beg];//当前边的起点
int v=sccno[edge[i].end];//当前边的终点
if(u!=v)//因为sccno中记录的是当前点属于哪个scc,所以u!=v证明不在同一个scc但是由一条边相连,
{ //证明这两个scc联通
newmap[u].push_back(v);//将scc中的点储存下来 ??
out[u]++;//两个scc联通 则入度加一,
}
}
}
void solve()
{
int i,j,k=0;
for(i=1;i<=scccnt;i++)
{
if(out[i]==0)
{
for(j=0;j<scc[i].size();j++)
ant[k++]=scc[i][j];
}
}
sort(ant,ant+k);
for(i=0;i<k;i++)
{
if(i<k-1)
printf("%d ",ant[i]);
else
printf("%d",ant[i]);
}
printf("\n");
}
int main()
{
int j,i;
while(scanf("%d",&n),n)
{
scanf("%d",&m); init();
getmap();
find(1,n);
suodian();
solve();
}
return 0;
}

  

poj 2553 The Bottom of a Graph【强连通分量求汇点个数】的更多相关文章

  1. poj 2553 The Bottom of a Graph(强连通分量+缩点)

    题目地址:http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K ...

  2. POJ 2553 The Bottom of a Graph (强连通分量)

    题目地址:POJ 2553 题目意思不好理解.题意是:G图中从v可达的全部点w,也都能够达到v,这种v称为sink.然后升序输出全部的sink. 对于一个强连通分量来说,全部的点都符合这一条件,可是假 ...

  3. poj - 2186 Popular Cows && poj - 2553 The Bottom of a Graph (强连通)

    http://poj.org/problem?id=2186 给定n头牛,m个关系,每个关系a,b表示a认为b是受欢迎的,但是不代表b认为a是受欢迎的,关系之间还有传递性,假如a->b,b-&g ...

  4. POJ 2553 The Bottom of a Graph(强连通分量)

    POJ 2553 The Bottom of a Graph 题目链接 题意:给定一个有向图,求出度为0的强连通分量 思路:缩点搞就可以 代码: #include <cstdio> #in ...

  5. [poj 2553]The Bottom of a Graph[Tarjan强连通分量]

    题意: 求出度为0的强连通分量. 思路: 缩点 具体有两种实现: 1.遍历所有边, 边的两端点不在同一强连通分量的话, 将出发点所在强连通分量出度+1. #include <cstdio> ...

  6. POJ 2553 The Bottom of a Graph(强连通分量的出度)

    题意: 求出图中所有汇点 定义:点v是汇点须满足 --- 对图中任意点u,若v可以到达u则必有u到v的路径:若v不可以到达u,则u到v的路径可有可无. 模板:http://www.cnblogs.co ...

  7. POJ 2553 The Bottom of a Graph (Tarjan)

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11981   Accepted: ...

  8. POJ 2553 The Bottom of a Graph Tarjan找环缩点(题解解释输入)

    Description We will use the following (standard) definitions from graph theory. Let V be a nonempty ...

  9. poj 2553 The Bottom of a Graph

    求解的是有向图中满足“自己可达的顶点都能到达自己”的顶点个数如果强连通分量中某个顶点,还能到达分量外的顶点,则该连通分量不满足要求// 因此,本题要求的是将强连通分量缩点后所构造的新图中出度为0的顶点 ...

随机推荐

  1. demo——06弹性和制作骰子

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  2. python的一些学习资料(持续更新中)

    Markdown在线编辑器 廖雪峰官方博客[基础入门好资料] python-guide[传说中的巨牛写的] the5fire的技术博客[全职python程序员博客]

  3. Python 函数式编程学习

    描述:通过将函数作为参数,使得功能类似的函数实现可以整合到同一个函数. Before def getAdd(lst): result = 0 for item in lst: result += it ...

  4. DM8168 debug continue... ...

    1.boot   VFS: Unable to mount root fs via NFS, trying floppy.   VFS: Cannot open root device "n ...

  5. Ajax编程相对路径与绝对路径

    http://www.worlduc.com/blog2012.aspx?bid=16946309 ajax同一域名调用采用相对路径 var url = 'QuerySingleDataByField ...

  6. Cocos2d-x 3.0 beta 中加入附加项目,解决无法打开包括文件:“extensions/ExtensionMacros.h”: No such file or directory”

    Cocos2d-x 3.0 Alpha 1开始 对目录结构进行了整合.结果有些附加项目也被在项目中被精简出去. 比如说如果你需要使用CocoStdio导出的JSON.或使用Extensions扩展库, ...

  7. python 重载 __hash__ __eq__

    __author__ = 'root' from urlparse import urlparse class host_news(): def __init__(self, id, url): se ...

  8. linux 监控

    http://www.iyunv.com/thread-50606-1-1.html http://segmentfault.com/a/1190000002537665 http://blog.cs ...

  9. myeclipse启动报“java was started but returned exit code=13”

    在win8系统中的myeclipse拷贝到win7系统中后,解压缩打开提示"java was started but returned exit code=13", 可能是myec ...

  10. [wikioi]多源最短路

    http://wikioi.com/problem/1077/ Floyd算法.精华是三层循环,if (dist(i,k) + dist(k,j) < dist(i,j)) then dist( ...