Description

给定两个长度分别为 \(n\) 和 \(m\) 的序列 \(a\) 和 \(b\)。要从这两个序列中分别随机一个数,设为 \(a_x,b_y\),定义该次游戏的 \(k\) 次收益为 \((a_x+b_y)^k\) 。对于 \(i=1,2,\dots,t\),求一次游戏 \(i\) 次收益的期望。\(n,m,t\leq 10^5\)。

Sol

根据期望的线性性,显然可以求每个点对的 \(i\) 次收益,最后再除以 \(nm\) 就好了。

所以问题转化为,对于每个 \(k\),求:

\[\sum_{i=1}^n\sum_{j=1}^m (a_i+b_j)^k
\]

接下来直接推导:

\[\begin{aligned}
ans_k&=\sum_{i=1}^n\sum_{j=1}^m (a_i+b_j)^k\\
&=\sum_{i=1}^n\sum_{j=1}^m\sum_{p=0}^k \binom kpa_i^pb_j^{k-p}\\
&=\sum_{p=0}^k\binom kp \left(\sum_{i=1}^na_i^p\right) \left(\sum_{j=1}^mb_j^{k-p} \right)\\
&=k!\cdot\sum_{p=0}^k \left(\sum_{i=1} ^n \frac{a_i^p}{p!}\right) \left(\sum_{j=1}^m\frac{b_j^{k-p}}{(k-p)!} \right) \end{aligned}
\]

发现这是个卷积式子,现在问题变成了如何求:

\[\sum_{i=1}^n a_i^p
\]

设 \(F(x)=\prod\limits_{i=1}^n(1+a_ix),G(x)=\ln(F(x))\)

那么:

\[\begin{aligned}
G(x)&=\ln(\prod_{i=1}^n 1+a_ix)\\
&=\sum_{i=1}^n \ln(1+a_ix)
\end{aligned}
\]

把 \(\ln(1+a_ix)\) 泰勒展开:

\[\begin{aligned}
G(x)&=\sum_{i=1}^n \ln(1+a_ix)\\
&= \sum_{i=1}^n \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k}\cdot a_i^k\cdot x^k\\
&= \sum_{k=1}^\infty \frac{(-1)^{k+1}}k\cdot x^k\cdot \left( \sum_{i=1}^n a_i^k \right)
\end{aligned}
\]

后边那项就是我们要求的。

总结一下,先分治\(\text{NTT}\)求出\(F(x)\),再取对数求出\(G(x)\),然后第 \(k\) 项乘上一个系数就是 \(\sum\limits_{i=1}^n a_i^k\) 了。

Code

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef double db;
typedef long long ll;
typedef vector<int> vec;
const int N=262144+5;
const int mod=998244353;
#define pb push_back int w[2][N],in[N];
int fac[N],ifac[N],A[N],B[N];
int n,m,t,a[N],b[N],c[N],d[N];
int lim,maxn,rev[N],tmpa[N],tmpb[N]; int ksm(int a,int b=mod-2,int ans=1){
while(b){
if(b&1) ans=1ll*ans*a%mod;
a=1ll*a*a%mod;b>>=1;
} return ans;
} void ntt(int *f,int g){
for(int i=1;i<lim;i++) if(i<rev[i]) swap(f[i],f[rev[i]]);
for(int mid=1;mid<lim;mid<<=1){
for(int R=mid<<1,j=0;j<lim;j+=R){
for(int k=0;k<mid;k++){
int x=f[j+k],y=1ll*w[g][maxn/R*k]*f[j+k+mid]%mod;
f[j+k]=x+y>=mod?x+y-mod:x+y,f[j+k+mid]=x-y<0?x-y+mod:x-y;
}
}
} if(g)
for(int i=0;i<lim;i++) f[i]=1ll*f[i]*in[lim]%mod;
} vec calc(int *a,int l,int r){
if(l==r){vec now;now.pb(1);now.pb(a[l]);return now;}
int mid=l+r>>1;
vec L=calc(a,l,mid),R=calc(a,mid+1,r);
lim=1;while(lim<=r-l+1) lim<<=1;
for(int i=1;i<lim;i++) rev[i]=(rev[i>>1]>>1)|(i&1?lim>>1:0);
for(int i=0;i<(int)L.size();i++) A[i]=L[i];
for(int i=0;i<(int)R.size();i++) B[i]=R[i];
ntt(A,0),ntt(B,0);
for(int i=0;i<lim;i++) A[i]=1ll*A[i]*B[i]%mod;
ntt(A,1); vec now;
for(int i=0;i<=r-l+1;i++) now.pb(A[i]),A[i]=B[i]=0;
for(int i=r-l+2;i<lim;i++) A[i]=B[i]=0;
return now;
} void solveinv(int *a,int *b,int len){
if(len==1) return b[0]=ksm(a[0]),void();
solveinv(a,b,len>>1); lim=len<<1;
for(int i=1;i<lim;i++) rev[i]=(rev[i>>1]>>1)|(i&1?lim>>1:0);
for(int i=len;i<lim;i++) A[i]=0;
for(int i=0;i<len;i++) A[i]=a[i];
ntt(A,0),ntt(b,0);
for(int i=0;i<lim;i++)
b[i]=1ll*b[i]*(2ll-1ll*A[i]*b[i]%mod+mod)%mod;
ntt(b,1); for(int i=len;i<lim;i++) b[i]=0;
} void ds(int *a,int *b,int n){
for(int i=0;i<n;i++)
b[i]=1ll*a[i+1]*(i+1)%mod;
b[n]=0;
} void jf(int *a,int n){
for(int i=n;i;i--)
a[i]=1ll*a[i-1]*in[i]%mod;
a[0]=0;
} void solveln(int *a,int *b,int n){
memset(tmpa,0,sizeof tmpa);
memset(tmpb,0,sizeof tmpb);
lim=1;while(lim<n) lim<<=1;
solveinv(a,tmpa,lim);
lim=1;while(lim<n<<1) lim<<=1;
for(int i=1;i<lim;i++) rev[i]=(rev[i>>1]>>1)|(i&1?lim>>1:0);
ds(a,tmpb,n);
ntt(tmpa,0),ntt(tmpb,0);
for(int i=0;i<lim;i++) b[i]=1ll*tmpa[i]*tmpb[i]%mod;
ntt(b,1); jf(b,n);
} void init(int n){
fac[0]=ifac[0]=1;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%mod;
ifac[n]=ksm(fac[n]);
for(int i=n-1;i;i--) ifac[i]=1ll*ifac[i+1]*(i+1)%mod;
} signed main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=m;i++) scanf("%d",&b[i]);
scanf("%d",&t);
init(t);
maxn=1;while(maxn<=max(t<<1,n+m-2)) maxn<<=1;
w[0][0]=w[1][0]=1; in[1]=1;
w[0][1]=ksm(3,(mod-1)/maxn),w[1][1]=ksm((mod+1)/3,(mod-1)/maxn);
for(int i=2;i<=maxn;i++)
in[i]=ksm(i),
w[0][i]=1ll*w[0][i-1]*w[0][1]%mod,
w[1][i]=1ll*w[1][i-1]*w[1][1]%mod;
vec aa=calc(a,1,n),bb=calc(b,1,m);
for(int i=0;i<=n;i++) c[i]=aa[i];
for(int i=0;i<=m;i++) d[i]=bb[i];
memset(a,0,sizeof a),memset(b,0,sizeof b);
solveln(c,a,t); a[0]=n; // 注意这里的0次项 积分给消掉了 所以要特殊赋值
solveln(d,b,t); b[0]=m;
for(int i=1;i<=t;i++){
a[i]=1ll*a[i]*i%mod;
b[i]=1ll*b[i]*i%mod;
if(!(i&1)) a[i]=mod-a[i],b[i]=mod-b[i];
a[i]=1ll*a[i]*ifac[i]%mod;
b[i]=1ll*b[i]*ifac[i]%mod;
}
for(int i=t+1;i<lim;i++) a[i]=b[i]=0;
lim=maxn;
for(int i=1;i<lim;i++) rev[i]=(rev[i>>1]>>1)|(i&1?lim>>1:0);
ntt(a,0),ntt(b,0);
for(int i=0;i<lim;i++) a[i]=1ll*a[i]*b[i]%mod;
ntt(a,1);
for(int inn=ksm(1ll*n*m%mod),i=1;i<=t;i++)
printf("%lld\n",1ll*a[i]*fac[i]%mod*inn%mod);
return 0;
}

[Luogu4705] 玩游戏的更多相关文章

  1. luogu4705玩游戏

    题解 我们要对于每个t,求一个(1/mn)sigma(ax+by)^t. 把系数不用管,把其他部分二项式展开一下: simga(ax^r*by^(t-r)*C(t,r)). 把组合数拆开,就变成了一个 ...

  2. Luogu4705 玩游戏 分治FFT

    传送门 \(\begin{align*} Ans_k &= \sum\limits_{i=1}^n\sum\limits_{j=1}^m (a_i + b_j)^k \\ &= \su ...

  3. 原生JS实战:写了个一边玩游戏,一边记JS的API的游戏

    本文是苏福的原创文章,转载请注明出处:苏福CNblog:http://www.cnblogs.com/susufufu/p/5878913.html 本程序[一边玩游戏,一边记JS的API]是本人的个 ...

  4. bzoj4730: Alice和Bob又在玩游戏

    Description Alice和Bob在玩游戏.有n个节点,m条边(0<=m<=n-1),构成若干棵有根树,每棵树的根节点是该连通块内编号最 小的点.Alice和Bob轮流操作,每回合 ...

  5. 小易邀请你玩一个数字游戏,小易给你一系列的整数。你们俩使用这些整数玩游戏。每次小易会任意说一个数字出来,然后你需要从这一系列数字中选取一部分出来让它们的和等于小易所说的数字。 例如: 如果{2,1,2,7}是你有的一系列数,小易说的数字是11.你可以得到方案2+2+7 = 11.如果顽皮的小易想坑你,他说的数字是6,那么你没有办法拼凑出和为6 现在小易给你n个数,让你找出无法从n个数中选取部分求和

    小易邀请你玩一个数字游戏,小易给你一系列的整数.你们俩使用这些整数玩游戏.每次小易会任意说一个数字出来,然后你需要从这一系列数字中选取一部分出来让它们的和等于小易所说的数字. 例如: 如果{2,1,2 ...

  6. cdoj 1136 邱老师玩游戏 树形背包

    邱老师玩游戏 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/show/1136 Desc ...

  7. win7系统玩游戏不能全屏的解决办法

    1.修改注册表中的显示器的参数设置   Win键+R键,打开运行窗口,输入regedit回车,这样就打开了注册表编辑器,然后,定位到以下位置:   HKEY_LOCAL_MACHINE\SYSTEM\ ...

  8. 【用PS3手柄在安卓设备上玩游戏系列】连接手柄和设备

    背景 硬件要求1:PS3 手柄 + 手柄配套的USB线 硬件要求2:已经获得 ROOT 权限并且支持蓝牙的安卓设备 软件要求1:Sixaxis Compatibility Checker PS3 手柄 ...

  9. UESTC_邱老师玩游戏 2015 UESTC Training for Dynamic Programming<Problem G>

    G - 邱老师玩游戏 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submi ...

随机推荐

  1. vue-cli+mock.js+axios模拟前后台数据交互

    最近工作不是很忙,自己做了一个vue的移动端的小项目,涉及到后台数据的时候,网上查阅了一些资料,因为是自己写的项目没有后台只能自己模拟数据,刚开始就自己写了一些静态数据后来觉得尽量模拟真实的比较好些, ...

  2. 【转】Python+opencv利用sobel进行边缘检测(细节讲解)

    #! usr/bin/env python # coding:utf-8 # 2018年7月2日06:48:35 # 2018年7月2日23:11:59 import cv2 import numpy ...

  3. VUE 出现Access to XMLHttpRequest at 'http://192.168.88.228/login/Login?phone=19939306484&password=111' from origin 'http://localhost:8080' has been blocked by CORS policy: The value of the 'Access-Contr

    报错如上图!!!!    解决办法首先打开 config -> index.js ,粘贴 如下图代码,'https://www.baidu.com'换成要访问的的api域名,注意只要域名就够了, ...

  4. Hadoop集群搭建-HA高可用(手动切换模式)(四)

    步骤和集群规划 1)保存完全分布式模式配置 2)在full配置的基础上修改为高可用HA 3)第一次启动HA 4)常规启动HA 5)运行wordcount 集群规划: centos虚拟机:node-00 ...

  5. Java解析json字符串和json数组

    Java解析json字符串和json数组 public static Map<String, String> getUploadTransactions(String json){ Map ...

  6. python编程从入门到实战1-3章

    print('hellow world') """ 多行注释"""#大小写print('i love you')mssage='hellow ...

  7. RAID部署

    添加硬盘 1.创建一个RAID阵列卡 2.格式化刚刚做好的md0 3.创建挂载目录 4.自动挂载,永久生效 5.使用 创建RAID 1.创建一个RAID阵列卡 2.格式化 3.创建挂载目录 4.自动挂 ...

  8. webapi 知识点

    在web api 中后台的方法必须 加入 [HttpGet] ,[HttpPost],[HttpPut],[HttpDelete] 来区分,这是一种习惯. ps: get 方式参数都存在http协议头 ...

  9. JavaEE开发之Spring中的条件注解、组合注解与元注解

    上篇博客我们详细的聊了<JavaEE开发之Spring中的多线程编程以及任务定时器详解>,本篇博客我们就来聊聊条件注解@Conditional以及组合条件.条件注解说简单点就是根据特定的条 ...

  10. [Swift]LeetCode377. 组合总和 Ⅳ | Combination Sum IV

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...