Problem Description

作为CNCS的半壁江山,狗哥常常在宇宙中心邵阳眺望黄浦江,夜晚的星空总是迷人,有时候还能见到彗星滑落。

狗哥是幸运的,他在两秒钟内看到了十七颗彗星划过天际,作为打ACM的学者,自然不会有「稳定-1」情况。他开始研究彗星运动的轨迹,发现他们都遵照斐波那契螺旋线在运动着。

尤里卡!狗哥觉得这就是找寻「生命,宇宙和一切的终极答案」的精要所在,但是怎么表示呢?狗哥觉得求取斐波那契螺旋线经过的一个个方格的面积之和就是公式的表现。

例如下图,螺旋线每划过一个方格,都转过了四分之一圈。如果我们以四分之一圈为单位,那么我们用类似带分数的形式表示螺旋线转动的起点和终点。例如,0+0
到 0 + 1 意即从第一个方格转到第二个方格,划过了前两个方格,他们的面积之和为2(1+1)。同理,0+0 到 1+0
划过了前五个方格,他们的面积之和为40(1+1+4+9+25)。

但是聪明的狗哥需要一个程序去获得指定范围内的螺旋线面积之和,狗哥给了你一首「希望之花」的时间,而他需要利用这个时间去打出四暗刻单骑。如果你能完成这个程序,狗哥会封你为格拉摩根伯爵

 
Input
不定组数据。

首先输入一个整数Q,代表狗哥询问次数。

接下来Q行,每行四个整数a,b,c,d,代表狗哥想求 a+b 到 c+d 之间的螺旋线面积之和。

1<= Q <= 10000

0<= a,c <= 10000

0 <= b,d <= 3

结果对192600817取模。

 
Output
一个数字,表示螺旋线面积之和。
 
Sample Input
4
0 0 0 1
0 0 1 0
1 2 2 1
1 1 0 3
4
0 0 0 1
0 0 1 0
1 2 2 1
1 1 0 3
 
Sample Output
2
40
4791
98
2
40
4791
98
题意: 求"a+b"到"c+d"以斐波那契数列为边长的正方形的面积之和,其中a或c是只有多少个4个正方形,b或d表示有b+1或d+1个正方形.如0+0是第一个正方形,0+1是第二个正方形,1+0是第五正方形.
简单的说就是"0+0","0+1","0+2","0+3","1+0"...的正方形.
注意:打表时需要每次都将矩阵初始化,否则上一次计算的结果会保留到下一次导致计算错误.
 
 #include<iostream>
 #include<cstdio>
 #include<cstring>
 #define ll long long
 using namespace std;
 ll an[];
 ;
 struct Mat
 {
     ll m[][];
 } ans,A;;
 Mat mul(Mat A,Mat B)
 {
     Mat ret;
     ; i<; i++)
         ; j<; j++)
         {
             ret.m[i][j]=;
             ; k<; k++)
                 ret.m[i][j]=(ret.m[i][j]+((A.m[i][k])*(B.m[k][j]))%mod)%mod;
         }
     return ret;
 }
 Mat pow(Mat A,long long n)
 {
     Mat ret;
     ret.m[][]=;
     ret.m[][]=;
     ret.m[][]=;
     ret.m[][]=;
     while(n)
     {
         )
             ret=mul(ret,A);
         A=mul(A,A);
         n>>=;
     }
     return ret;
 }
 void init()
 {
     ans.m[][]=;
     ans.m[][]=;
     A.m[][]=;
     A.m[][]=;
     A.m[][]=;
     A.m[][]=;
 }
 int main()
 {
     int q,aa,bb,c,d;
     init();
     an[]=;
     ; i<; i++)
     {
         init();///每次计算时记得初始化矩阵
         ans=mul(ans,pow(A,i-));
         an[i]=an[i-]+ans.m[][]*ans.m[][];
     }
     while(cin>>q)
     {
         while(q--)
         {
             cin>>aa>>bb>>c>>d;
             ll st=*aa+bb+,ed=*c+d+;
             if(st>ed)swap(st,ed);
             printf(]);
         }
     }
 }

HDU-problem-1002-人类史上最大最好的希望事件-矩阵快速幂的更多相关文章

  1. HDU 6462.人类史上最大最好的希望事件-递推 (“字节跳动-文远知行杯”广东工业大学第十四届程序设计竞赛)

    人类史上最大最好的希望事件 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  2. HDU 2243考研路茫茫——单词情结 (AC自动机+矩阵快速幂)

    背单词,始终是复习英语的重要环节.在荒废了3年大学生涯后,Lele也终于要开始背单词了. 一天,Lele在某本单词书上看到了一个根据词根来背单词的方法.比如"ab",放在单词前一般 ...

  3. HDU 5564:Clarke and digits 收获颇多的矩阵快速幂 + 前缀和

    Clarke and digits  Accepts: 16  Submissions: 29  Time Limit: 5000/3000 MS (Java/Others)  Memory Limi ...

  4. HDU 2243 考研路茫茫——单词情结(AC自动机+矩阵快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=2243 题意: 给出m个模式串,求长度不超过n的且至少包含一个模式串的字符串个数. 思路: 如果做过poj2778 ...

  5. BC#29A:GTY's math problem(math) B:GTY's birthday gift(矩阵快速幂)

    A: HDU5170 这题让比较a^b与c^d的大小.1<=a,b,c,d<=1000. 显然这题没法直接做,要利用对数来求,但是在math库中有关的对数函数返回的都是浮点数,所以这又要涉 ...

  6. HDU 2243 考研路茫茫――单词情结 ——(AC自动机+矩阵快速幂)

    和前几天做的AC自动机类似. 思路简单但是代码200余行.. 假设solve_sub(i)表示长度为i的不含危险单词的总数. 最终答案为用总数(26^1+26^2+...+26^n)减去(solve_ ...

  7. 数学--数论--HDU - 6395 Let us define a sequence as below 分段矩阵快速幂

    Your job is simple, for each task, you should output Fn module 109+7. Input The first line has only ...

  8. HDU 4471 矩阵快速幂 Homework

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4471 解题思路,矩阵快速幂····特殊点特殊处理····· 令h为计算某个数最多须知前h个数,于是写 ...

  9. HDU 2256 Problem of Precision (矩阵快速幂)(推算)

    Problem of Precision Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

随机推荐

  1. Android单个控件占父控件宽度一半且水平居中

    前些天,在工作中遇到了一个需求:一个“加载上一页”的按钮宽度为父控件宽度一半,且水平居中于父控件中. 在此给出两种思路: 1.直接在Activity代码中获取到当前父控件的宽度,并将此按钮宽度值设置成 ...

  2. Mybatis学习笔记之二(动态mapper开发和spring-mybatis整合)

    一.输入映射和输出映射 1.1 parameterType(输入类型) [传递简单类型] 详情参考Mybatis学习笔记之一(环境搭建和入门案例介绍) 使用#{}占位符,或者${}进行sql拼接. [ ...

  3. 转换Word文档为PDF文件

    1.使用 Office COM组件的Microsoft.Office.Interop.word.dll库 该方法需要在电脑上安装Office软件,并且需要Office支持转换为PDF格式,如果不支持, ...

  4. .net core mvc 区域路由设置(配置)

    写博客原因:添加了区域(用作后台)后,报错: An unhandled exception occurred while processing the request.AmbiguousActionE ...

  5. [C#] C# 知识回顾 - 装箱与拆箱

    装箱与拆箱 目录 生活中的装箱与拆箱 C# 的装箱与拆箱 值类型和引用类型 装箱 拆箱 读者见解 生活中的装箱与拆箱    我们习惯了在网上购物,这次你想买本编程书 -- <C 语言从入门到放弃 ...

  6. Java开发笔记(三十七)利用正则串分割字符串

    前面介绍了处理字符串的常用方法,还有一种分割字符串的场景也很常见,也就是按照某个规则将字符串切割为若干子串.分割规则通常是指定某个分隔符,根据字符串内部的分隔符将字符串进行分割,例如逗号.空格等等都可 ...

  7. 教我徒弟Android开发入门(四)

    本期知识点: 两大常用布局的简单介绍 在我们的APP使用第三方库 Android Studio常用快捷键 一.两大常用布局 1.LinearLayout线性布局 线性布局,可以垂直显示或者水平显示,设 ...

  8. Laravel5多图上传和Laravel5单图上传的功能实现

    Laravel5文件上传默认只能上传一张图片,但是有的时候我们需要一次性上传多图就不行了,我在网上看了很多关于laravel5图片上传的文章,很多都只是介绍laravel5单图上传,多图片上传介绍少之 ...

  9. JS之类数组

    类数组 什么是类数组? 定义: 拥有length属性,其属性(索引)为非负整数 不具有数组的所具有的方法 类数组与非类数组的比较 类数组: var obj = { 0 : "a", ...

  10. nth-child(n)和nth-of-type(n)的区别

    1.官方解释: p:nth-child(2)     选择属于其父元素的第二个子元素的每个 <p> 元素. p:nth-of-type(2) 选择属于其父元素第二个 <p> 元 ...