Nearest Common Ancestors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 30147   Accepted: 15413

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

Source

 
题目大意:
输入T组数据,
然后输入n个节点,
紧接着输入n-1条边 x y,表示x是y的父亲节点
最后输入要询问的 s,t
求s t的最近公共祖先
题解:LCA
 
#include<iostream>
#include<vector>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=;
const int logN=;
vector<int> G[N];
int root;
int parent[][N];
int fa[N],n,x,y,s,t;
int depth[N]; void dfs(int v,int p,int d)
{
parent[][v]=p;
depth[v]=d;
for(int i=;i<G[v].size();i++)
if (G[v][i]!=p)
{
fa[G[v][i]]=v;
dfs(G[v][i],v,d+);
}
}
void init(int V)
{
int root;
for(int i=;i<=n;i++)
if (fa[i]==) {root=i; break;}
dfs(root,-,);
for(int k=;k+<logN;k++)
{
for(int v=;v<=V;v++)
{
if(parent[k][v]<) parent[k+][v]=-;
else parent[k+][v]=parent[k][parent[k][v]];
}
}
}
int lca(int u,int v)
{
if (depth[u]>depth[v]) swap(u,v);
for(int k=;k<logN;k++)
{
if ((depth[v]-depth[u])>>k & )
v=parent[k][v];
}
if (u==v) return u;
for(int k=logN-;k>=;k--)
{
if (parent[k][u]!=parent[k][v])
{
u=parent[k][u];
v=parent[k][v];
}
}
return parent[][u];
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<=n;i++) {G[i].clear(); fa[i]=;}
for(int i=;i<=n-;i++)
{
scanf("%d%d",&x,&y);
G[x].push_back(y);
fa[y]=x;
}
init(n);
scanf("%d%d",&s,&t);
int croot=lca(s,t);
printf("%d\n",croot);
}
return ;
}

ST&RMQ  的LCA

#include<iostream>
#include<vector>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=;
const int M=;
int tot,cnt,n,T,s,t;
int head[N]; //记录i节点在e数组中的其实位置
int ver[*N]; //ver:保存遍历的节点序列,长度为2n-1,从下标1开始保存
int R[*N]; // R:和遍历序列对应的节点深度数组,长度为2n-1,从下标1开始保存
int first[N]; //first:每个节点在遍历序列中第一次出现的位置
bool vis[N]; //遍历时的标记数组
int dp[*N][M],fa[N]; struct edge
{
int u,v,next;
}e[*N];
void dfs(int u ,int dep)
{
vis[u] = true;
ver[++tot] = u;
first[u] = tot;
R[tot] = dep;
for(int k=head[u]; k!=-; k=e[k].next)
if( !vis[e[k].v] ) //这里可以省个vis数组,如果在dfs改成dfs(当前节点,当前节点的父亲,当前节点的深度) 具体可以参照connections with cities {
int v=e[k].v;
dfs(v,dep+);
ver[++tot]=u;
R[tot]=dep;
}
}
void ST(int n)
{
for(int i=;i<=n;i++)
dp[i][] = i;
for(int j=;(<<j)<=n;j++)
{
for(int i=;i+(<<j)-<=n;i++)
{
int a = dp[i][j-] , b = dp[i+(<<(j-))][j-];
dp[i][j] = R[a]<R[b]?a:b;
}
}
} int RMQ(int l,int r)
{
int k=(int)(log((double)(r-l+))/log(2.0));
int a = dp[l][k], b = dp[r-(<<k)+][k]; //保存的是编号
return R[a]<R[b]?a:b;
} int LCA(int u ,int v)
{
int x = first[u] , y = first[v];
if(x > y) swap(x,y);
int res = RMQ(x,y);
return ver[res];
} void addedge(int u,int v)
{
e[++cnt].u=u;
e[cnt].v=v;
e[cnt].next=head[u];
head[u]=cnt;
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
memset(head,-,sizeof(head));
memset(vis,,sizeof(vis));
memset(fa,,sizeof(fa));
cnt=; tot=;
for(int i=;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
addedge(x,y);
fa[y]=x;
}
for(int i=;i<=n;i++)
if (fa[i]==) { dfs(i,); break;}
ST(*n-);
scanf("%d%d",&s,&t);
printf("%d\n",LCA(s,t));
}
return ;
}

poj 1330 Nearest Common Ancestors(LCA 基于二分搜索+st&rmq的LCA)的更多相关文章

  1. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  2. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  3. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  4. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

  5. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  6. LCA POJ 1330 Nearest Common Ancestors

    POJ 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24209 ...

  7. POJ 1330 Nearest Common Ancestors 【LCA模板题】

    任意门:http://poj.org/problem?id=1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000 ...

  8. POJ 1330 Nearest Common Ancestors (LCA,dfs+ST在线算法)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14902   Accept ...

  9. POJ 1330 Nearest Common Ancestors(Targin求LCA)

    传送门 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26612   Ac ...

随机推荐

  1. Package libvirt was not found in the pkg-config search path

    关于pip安装libvirt-python的时候提示Package libvirt was not found in the pkg-config search path的问题解决方法 1.一开始以为 ...

  2. Python3基础 file read 读取txt文件的前几个字符

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  3. Linux多线程--使用互斥量同步线程【转】

    本文转载自:http://blog.csdn.net/ljianhui/article/details/10875883 前文再续,书接上一回,在上一篇文章:Linux多线程——使用信号量同步线程中, ...

  4. PMBOK十大知识领域是什么?

    PMBOK十大知识领域是:整合管理.范围管理.时间管理.成本管理.质量管理.人力资源管理.沟通管理.风险管理.采购管理.干系人管理. 各用一句话概括项目管理知识体系十大知识领域: 1.整合管理:其作用 ...

  5. jQuery ajax 添加头部参数跨域

    1.添加HTTP文件头 $.ajax({ url: "http://www.baidu.com", //contentType: "text/html; charset= ...

  6. Linq in GroupBy GroupJoin

    还是上一份的代码例子: public class Person { public int ID { get; set; } public string Name { get; set; } publi ...

  7. Pytorch版本yolov3源码阅读

    目录 Pytorch版本yolov3源码阅读 1. 阅读test.py 1.1 参数解读 1.2 data文件解析 1.3 cfg文件解析 1.4 根据cfg文件创建模块 1.5 YOLOLayer ...

  8. Apache+Php+Mariadb+NFS+discuz

    安装LAMP服务器,并利用discuz做测试 nfs + discuz      192.168.108.158 php + DNS        192.168.108.160 apache     ...

  9. UVa 10905 孩子们的游戏

    https://vjudge.net/problem/UVA-10905 题意: 给定n个正整数,把它们连接成一个最大的整数. 思路: 实在是没想到直接用string来排序了. #include< ...

  10. 深蓝色 --ppt

    Deep Learning of Binary Hash Codes for Fast Image Retrieval [Paper] [Code-Caffe] 1. 摘要 针对图像检索问题,提出简单 ...