Nearest Common Ancestors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 30147   Accepted: 15413

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

Source

 
题目大意:
输入T组数据,
然后输入n个节点,
紧接着输入n-1条边 x y,表示x是y的父亲节点
最后输入要询问的 s,t
求s t的最近公共祖先
题解:LCA
 
#include<iostream>
#include<vector>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=;
const int logN=;
vector<int> G[N];
int root;
int parent[][N];
int fa[N],n,x,y,s,t;
int depth[N]; void dfs(int v,int p,int d)
{
parent[][v]=p;
depth[v]=d;
for(int i=;i<G[v].size();i++)
if (G[v][i]!=p)
{
fa[G[v][i]]=v;
dfs(G[v][i],v,d+);
}
}
void init(int V)
{
int root;
for(int i=;i<=n;i++)
if (fa[i]==) {root=i; break;}
dfs(root,-,);
for(int k=;k+<logN;k++)
{
for(int v=;v<=V;v++)
{
if(parent[k][v]<) parent[k+][v]=-;
else parent[k+][v]=parent[k][parent[k][v]];
}
}
}
int lca(int u,int v)
{
if (depth[u]>depth[v]) swap(u,v);
for(int k=;k<logN;k++)
{
if ((depth[v]-depth[u])>>k & )
v=parent[k][v];
}
if (u==v) return u;
for(int k=logN-;k>=;k--)
{
if (parent[k][u]!=parent[k][v])
{
u=parent[k][u];
v=parent[k][v];
}
}
return parent[][u];
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<=n;i++) {G[i].clear(); fa[i]=;}
for(int i=;i<=n-;i++)
{
scanf("%d%d",&x,&y);
G[x].push_back(y);
fa[y]=x;
}
init(n);
scanf("%d%d",&s,&t);
int croot=lca(s,t);
printf("%d\n",croot);
}
return ;
}

ST&RMQ  的LCA

#include<iostream>
#include<vector>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=;
const int M=;
int tot,cnt,n,T,s,t;
int head[N]; //记录i节点在e数组中的其实位置
int ver[*N]; //ver:保存遍历的节点序列,长度为2n-1,从下标1开始保存
int R[*N]; // R:和遍历序列对应的节点深度数组,长度为2n-1,从下标1开始保存
int first[N]; //first:每个节点在遍历序列中第一次出现的位置
bool vis[N]; //遍历时的标记数组
int dp[*N][M],fa[N]; struct edge
{
int u,v,next;
}e[*N];
void dfs(int u ,int dep)
{
vis[u] = true;
ver[++tot] = u;
first[u] = tot;
R[tot] = dep;
for(int k=head[u]; k!=-; k=e[k].next)
if( !vis[e[k].v] ) //这里可以省个vis数组,如果在dfs改成dfs(当前节点,当前节点的父亲,当前节点的深度) 具体可以参照connections with cities {
int v=e[k].v;
dfs(v,dep+);
ver[++tot]=u;
R[tot]=dep;
}
}
void ST(int n)
{
for(int i=;i<=n;i++)
dp[i][] = i;
for(int j=;(<<j)<=n;j++)
{
for(int i=;i+(<<j)-<=n;i++)
{
int a = dp[i][j-] , b = dp[i+(<<(j-))][j-];
dp[i][j] = R[a]<R[b]?a:b;
}
}
} int RMQ(int l,int r)
{
int k=(int)(log((double)(r-l+))/log(2.0));
int a = dp[l][k], b = dp[r-(<<k)+][k]; //保存的是编号
return R[a]<R[b]?a:b;
} int LCA(int u ,int v)
{
int x = first[u] , y = first[v];
if(x > y) swap(x,y);
int res = RMQ(x,y);
return ver[res];
} void addedge(int u,int v)
{
e[++cnt].u=u;
e[cnt].v=v;
e[cnt].next=head[u];
head[u]=cnt;
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
memset(head,-,sizeof(head));
memset(vis,,sizeof(vis));
memset(fa,,sizeof(fa));
cnt=; tot=;
for(int i=;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
addedge(x,y);
fa[y]=x;
}
for(int i=;i<=n;i++)
if (fa[i]==) { dfs(i,); break;}
ST(*n-);
scanf("%d%d",&s,&t);
printf("%d\n",LCA(s,t));
}
return ;
}

poj 1330 Nearest Common Ancestors(LCA 基于二分搜索+st&rmq的LCA)的更多相关文章

  1. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  2. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  3. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  4. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

  5. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  6. LCA POJ 1330 Nearest Common Ancestors

    POJ 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24209 ...

  7. POJ 1330 Nearest Common Ancestors 【LCA模板题】

    任意门:http://poj.org/problem?id=1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000 ...

  8. POJ 1330 Nearest Common Ancestors (LCA,dfs+ST在线算法)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14902   Accept ...

  9. POJ 1330 Nearest Common Ancestors(Targin求LCA)

    传送门 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26612   Ac ...

随机推荐

  1. 把json的字符串变为json对象

    如{"tag":"sendcode","data":{"phone":"18880488738"}} ...

  2. C# 将 Stream 写入文件

    public void StreamToFile(Stream stream,string fileName) { // 把 Stream 转换成 byte[] byte[] bytes = new ...

  3. Python3基础 函数 无参数无返回值 调用会输出hello world的函数

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  4. luogu P2184 贪婪大陆

    乍一不咋会 ╭(╯3╰)╮ 把地雷L到R看成一条线段 要求的就是区间内有多少条线段经过 很明显是要用[1,R]内的起点个数-[1,L-1]的终点个数 然后这起点和终点个数可以用简单的差分线段树来维护一 ...

  5. 51NOD 1066 Bash游戏

    1066 Bash游戏 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题   有一堆石子共有N个.A B两个人轮流拿,A先拿.每次最少拿1颗,最多拿K颗,拿到最后1颗石子的 ...

  6. LOJ#2632. 「BalticOI 2011 Day1」打开灯泡 Switch the Lamp On

    题目描述 译自 BalticOI 2011 Day1 T3「Switch the Lamp On」有一种正方形的电路元件,在它的两组相对顶点中,有一组会用导线连接起来,另一组则不会.有 N×M 个这样 ...

  7. BZOJ4896 [Thu Summer Camp2016]补退选

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  8. spring与shiro的集成

    web.xml中的配置: <!-- The filter-name matches name of a 'shiroFilter' bean inside applicationContext. ...

  9. Python day6_dictionary字典的常见方法1_笔记(基本类型结束)

    # 字典的简述 # 1.字典不能做字典的key,列表也不能作为列表的key info={ 'k1':'v1', 'k2':'v2' } print(info) #2.通过键获取值 print(info ...

  10. Beta冲刺二——《WAP团队》

    β冲刺第二天  1. 今日完成任务情况以及遇到的问题. ①马麒.杜有海:管理员审核表的进一步完善 ②郝明宇:登录.注册界面的完善 ③马宏伟.周欣:继续完善前端数据借用与后台的连接 ④乌勒扎:登录与注册 ...