使用TensorFlow实现分类
这一节使用TF搭建一个简单的神经网络用于分类任务,首先把需要的包引入,另外为了防止在多次运行中一些图中的tensor在内存中影响实验,采取重置操作:
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
def reset_graph(seed=42):
tf.reset_default_graph()
tf.set_random_seed(seed)
np.random.seed(seed)
reset_graph()
plt.figure(1,figsize=(8,6))
为了方便观察随机生成一组两维数据
x0 = np.random.normal(1,1,size=(100,2)) #[(x1,x2),()]
y0 = np.zeros(100)
x1 = np.random.normal(-1,1,size=(100,2))
y1 = np.ones(100)
x = np.concatenate((x0,x1),axis = 0)
y = np.concatenate((y0,y1),axis = 0)
plt.scatter(x[:,0],x[:,1],c=y,cmap='RdYlGn')
plt.show()
上面生成的两个类别的数据,均值分别为1和-1方差都为1

接下来就是训练模型
#模型
tf_x = tf.placeholder(tf.float32,x.shape)
tf_y = tf.placeholder(tf.int32,y.shape)
output = tf.layers.dense(tf_x,10,tf.nn.relu,name="hidden")
output = tf.layers.dense(output,2,name="output")
with tf.name_scope("loss"):
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=tf_y,logits=output)
loss = tf.reduce_mean(xentropy,name="loss")
with tf.name_scope("train"):
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
training_op = optimizer.minimize(loss)
#evaluate
with tf.name_scope("eval"):
correct = tf.nn.in_top_k(output,y,1)
accuracy = tf.reduce_mean(tf.cast(correct,tf.float32))
init = tf.global_variables_initializer()
plt.ion()
plt.figure(figsize=(8,6))
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
for step in range(100):
_,acc,pred = sess.run([training_op,accuracy,output],feed_dict={tf_x:x,tf_y:y})
plt.cla()
plt.scatter(x[:,0],x[:,1],c=pred.argmax(1),cmap='RdYlGn')
plt.text(1.5, -2, 'Accuracy=%.2f' % acc, fontdict={'size': 20, 'color': 'red'})
saver.save(sess, './model', write_meta_graph=False) #保存模型
plt.ioff()
plt.show()
上面创建了一个隐含层的网络,使用的是elu,也可以尝试使用其他的激活函数。需要注意的是tf.layers.dense的作用是outputs = activation(inputs.kernel + bias),可以看出在输出层是没有使用激活函数的,如果activation=None就表示使用的是线性映射。模型训练完毕后,我们将其持久化,方便以后的使用。我们来看下最终的结果:

使用TensorFlow实现分类的更多相关文章
- Tensorflow二分类处理dense或者sparse(文本分类)的输入数据
这里做了一些小的修改,感谢谷歌rd的帮助,使得能够统一处理dense的数据,或者类似文本分类这样sparse的输入数据.后续会做进一步学习优化,比如如何多线程处理. 具体如何处理sparse 主要是使 ...
- 『TensorFlow』分类问题与两种交叉熵
关于categorical cross entropy 和 binary cross entropy的比较,差异一般体现在不同的分类(二分类.多分类等)任务目标,可以参考文章keras中两种交叉熵损失 ...
- tensorflow之分类学习
写在前面的话 MNIST教程是tensorflow中文社区的第一课,例程即训练一个 手写数字识别 模型:http://www.tensorfly.cn/tfdoc/tutorials/mnist_be ...
- 机器学习框架ML.NET学习笔记【6】TensorFlow图片分类
一.概述 通过之前两篇文章的学习,我们应该已经了解了多元分类的工作原理,图片的分类其流程和之前完全一致,其中最核心的问题就是特征的提取,只要完成特征提取,分类算法就很好处理了,具体流程如下: 之前介绍 ...
- tensorflow文本分类实战——卷积神经网络CNN
首先说明使用的工具和环境:python3.6.8 tensorflow1.14.0 centos7.0(最好用Ubuntu) 关于环境的搭建只做简单说明,我这边是使用pip搭建了python的 ...
- TensorFlow 实现分类操作的函数学习
函数:tf.nn.sigmoid_cross_entropy_with_logits(logits, targets, name=None) 说明:此函数是计算logits经过sigmod函数后的交叉 ...
- 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(4)
# -*- coding: utf-8 -*- import glob import os.path import numpy as np import tensorflow as tf from t ...
- 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(3)
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...
- 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(2)
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...
随机推荐
- Qt中 .pro 文件和 .pri 文件简介
*.pro 这是一个典型的Qt示例程序的.pro文件(propriprfprl.pro): TEMPLATE = app CONFIG += QT QT += core gui TARGET = pr ...
- all与any的用法
all函数:检测矩阵中是否全为非零元素 any函数:检测矩阵中是否有非零元素,如果有,则返回1,否则,返回0.用法和all一样 语法: B = all(A) B = all(A, dim) 复制代码 ...
- ES5与ES6对比
ES5与ES6对比 1. 模块引用 1.在ES5里,引入React包基本通过require进行,代码类似这样: // ES5 var React = require('react'); var { C ...
- python基础学习第三天
#变量存储在内存中的值.这就意味着在创建变量时会在内存中开辟一个空间#基于变量的数据类型,解释器会分配指定内存,并决定什么数据可以被存储在内存中#变量可以指定不同的数据类型,这些变量可以存储整数.小数 ...
- Echo团队Alpha冲刺随笔 - 第一天
项目冲刺情况 进展 每个人开始搭建自己要用的各种框架.库,基本实现了登录功能 问题 除了框架使用问题外,暂未遇到其他疑难杂症 心得 今天有一个还可以的开头,相信后续会挺顺利的 今日会议内容 黄少勇 今 ...
- Python import用法
官方文档说明: Python code in one module gains access to the code in another module by the process of impor ...
- 【Codeforces Round 1110】Codeforces Global Round 1
Codeforces Round 1110 这场比赛只做了\(A\).\(B\).\(C\),排名\(905\),不好. 主要的问题在\(D\)题上,有\(505\)人做出,但我没做出来. 考虑的时候 ...
- TCP/IP协议--TCP的超时和重传
TCP是可靠传输.可靠之一体现在收到数据后,返回去一个确认.但是不能完全避免的是,数据和确认都可能丢失.解决这个办法就是,提供一个发送的重传定时器:如果定时器溢出时还没收到确认,它就重传这个报文段. ...
- MFC入门(三)-- MFC图片/文字控件(循环显示文字和图片的小程序)
惯例附上前几个博客的链接: MFC入门(一)简单配置:http://blog.csdn.net/zmdsjtu/article/details/52311107 MFC入门(二)读取输入字符:http ...
- UOJ67 新年的毒瘤 tarjan
题目传送门 题意:给出一个$N$个点.$M$条边的无向图,找出其中的点,满足去掉该点与和它相连的边之后,这个图会变成一棵树.$N , M \leq 10^5$ 说是毒瘤,真的不毒瘤 思考一下,我们需要 ...