快速幂&快速乘法
尽管快速幂与快速乘法好像扯不上什么关系,但是东西不是很多,就一起整理到这里吧
快速幂思想就是将ax看作x个a相乘,用now记录当前答案,然后将指数每次除以2,然后将当前答案平方,如果x的2进制最后一位为1的话,就将答案乘以现在的数。快速乘法类似,只是将a*x看作x个a相加。
代码
#include<cstdio>
#include<iostream>
using namespace std;
int mi(int a,int x)
{
int ans=;
for(int now=a;x>=;x>>=,now=now*now)//a表示底数,x表示次数
{
if(x&) ans=ans*now;
}
return ans;
}
int cheng(int a,int x)//表示a*x
{ int ans=;
for(int now=a;x>=;now=now*,x>>=)
{
if(x&) ans=ans+now;
}
return ans;
}
int main()
{
int a,x;
scanf("%d%d",&a,&x);
printf("快速幂 %d\n",mi(a,x));
printf("快速乘法 %d\n",cheng(a,x));
return ;
}
快速幂&快速乘法的更多相关文章
- 【bzoj4870】[Shoi2017]组合数问题 dp+快速幂/矩阵乘法
题目描述 输入 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 输出 一行一个整数 ...
- 取模性质,快速幂,快速乘,gcd和最小公倍数
一.取模运算 取模(取余)运算法则: 1. (a+b)%p=(a%p+b%p)%p; 2.(a-b)%p=(a%p-b%p)%p; 3.(a*b)%p=(a%p * b%p)%p; 4.(a^b)%p ...
- HDU 4549 矩阵快速幂+快速幂+欧拉函数
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- poj 3735 Training little cats 矩阵快速幂+稀疏矩阵乘法优化
题目链接 题意:有n个猫,开始的时候每个猫都没有坚果,进行k次操作,g x表示给第x个猫一个坚果,e x表示第x个猫吃掉所有坚果,s x y表示第x个猫和第y个猫交换所有坚果,将k次操作重复进行m轮, ...
- 乘方快速幂 OR 乘法快速幂
关于快速幂这个算法,已经不想多说,很早也就会了这个算法,但是原来一直靠着模板云里雾里的,最近重新学习,发现忽视了一个重要的问题,就是若取模的数大于int型,即若为__int64的时候应该怎么办,这样就 ...
- hdu 5187 zhx's contest [ 找规律 + 快速幂 + 快速乘法 || Java ]
传送门 zhx's contest Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- HDU - 5187 zhx's contest(快速幂+快速乘法)
作为史上最强的刷子之一,zhx的老师让他给学弟(mei)们出n道题.zhx认为第i道题的难度就是i.他想要让这些题目排列起来很漂亮. zhx认为一个漂亮的序列{ai}下列两个条件均需满足. 1:a1. ...
- [vijos1725&bzoj2875]随机数生成器<矩阵乘法&快速幂&快速乘>
题目链接:https://vijos.org/p/1725 http://www.lydsy.com/JudgeOnline/problem.php?id=2875 这题是前几年的noi的题,时间比较 ...
- BZOJ-2326 数学作业 矩阵乘法快速幂+快速乘
2326: [HNOI2011]数学作业 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1564 Solved: 910 [Submit][Statu ...
随机推荐
- 利用Git工具将本地创建的项目上传到Github上
前言 作为一个对前沿技术很看好的小青年,怎么能不会用Github呢?一年前我创建了Github,也知道git,但是尝试过用,但是就没弄明白,很多粉丝都问我Github的账号,想关注一波,无奈里面啥都没 ...
- list 的 增 删
增: 1. name = [] 2. name.append() 3. name.extend(name2) name2为可迭代的 name + name2 与之效果一样,合并为一个列表 4. nam ...
- 软工个人博客-week7
Part 1 No Silver Bullet - Essence and Accidents of Software Engineering软件工程中没用通用的方法或者技术让软件工程在短 ...
- BUAAMOOC项目终审报告
工作总结 我们是歪果仁带你灰开发团队.我们开发的项目是北航学堂(MOOC)的android客户端:BUAAMOOC. 目前我们完成了主要功能,包括UI设计,视频播放,视频下载,学习进度,个人信息等功能 ...
- 自定义视图(SpringMVC)
一.首先理解视图的解析过程 1)请求处理方法执行完成后,最终返回一个 ModelAndView 对象. ModelAndView 对象,它包含了逻辑名(访问URL)和模型对象(javaBean数据)的 ...
- Kitematic - VirtualBox is not installed. Docker for windows 10
Kitematic - VirtualBox is not installed. Docker for windows 10 https://github.com/docker/kitematic/i ...
- docker网络调试过程
#1: 添加永久网桥 vi /etc/sysconfig/network-scripts/ifcfg-br0 DEVICE=br0 TYPE=Bridge BOOTROTO=static IPADDR ...
- HTML的input类型为hidden导致无法reset改字段的value问题
问题关键:根据HTML规范,hidden是非ui类元素,不接受用户处理.所以form的 reset并不影响它. http://stackoverflow.com/questions/6367793/w ...
- [日常工作] cmd以及bash 直接使用当前目录的方法
1. 从知乎学到了一点.. 2. 之前想在比如f:\a\b 目录下执行cmd命令的时候 总是需要先 f: 再cd目录的方式. 3. 知乎上面学到 发现可以通过在当前目录下面 输入 cmd 或者是 b ...
- mouseover与mouseenter,mouseout与mouseleave的区别
mouseover事件:不论鼠标指针穿过被选元素或其子元素,都会触发 mouseover 事件,对应mouseout事件: mouseenter事件:只有在鼠标指针穿过被选元素时,才会触发 mouse ...