机器学习框架Tensorflow数字识别MNIST
SoftMax回归 http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92
我们的训练集由
个已标记的样本构成:
,其中输入特征
。(我们对符号的约定如下:特征向量
的维度为
,其中
对应截距项 。) 由于 logistic 回归是针对二分类问题的,因此类标记
。假设函数(hypothesis function) 如下:
我们将训练模型参数
,使其能够最小化代价函数 :
在 softmax回归中,我们解决的是多分类问题(相对于 logistic 回归解决的二分类问题),类标
可以取
个不同的值(而不是 2 个)。因此,对于训练集
,我们有
。(注意此处的类别下标从 1 开始,而不是 0)。例如,在 MNIST 数字识别任务中,我们有
个不同的类别。
对于给定的测试输入
,我们想用假设函数针对每一个类别j估算出概率值
。也就是说,我们想估计
的每一种分类结果出现的概率。因此,我们的假设函数将要输出一个
维的向量(向量元素的和为1)来表示这
个估计的概率值。 具体地说,我们的假设函数
形式如下:
其中
是模型的参数。请注意
这一项对概率分布进行归一化,使得所有概率之和为 1 。
为了方便起见,我们同样使用符号
来表示全部的模型参数。在实现Softmax回归时,将
用一个
的矩阵来表示会很方便,该矩阵是将
按行罗列起来得到的,如下所示:
代价函数
现在我们来介绍 softmax 回归算法的代价函数。在下面的公式中,
是示性函数,其取值规则为:
值为真的表达式
,
值为假的表达式
。举例来说,表达式
的值为1 ,
的值为 0。我们的代价函数为:
值得注意的是,上述公式是logistic回归代价函数的推广。logistic回归代价函数可以改为:
可以看到,Softmax代价函数与logistic 代价函数在形式上非常类似,只是在Softmax损失函数中对类标记的
个可能值进行了累加。注意在Softmax回归中将
分类为类别
的概率为:
.
对于
的最小化问题,目前还没有闭式解法。因此,我们使用迭代的优化算法(例如梯度下降法,或 L-BFGS)。经过求导,我们得到梯度公式如下:
让我们来回顾一下符号 "
" 的含义。
本身是一个向量,它的第
个元素
是
对
的第
个分量的偏导数。
有了上面的偏导数公式以后,我们就可以将它代入到梯度下降法等算法中,来最小化
。 例如,在梯度下降法的标准实现中,每一次迭代需要进行如下更新:
(
)。
当实现 softmax 回归算法时, 我们通常会使用上述代价函数的一个改进版本。具体来说,就是和权重衰减(weight decay)一起使用。我们接下来介绍使用它的动机和细节。
Softmax回归模型参数化的特点
Softmax 回归有一个不寻常的特点:它有一个“冗余”的参数集。为了便于阐述这一特点,假设我们从参数向量
中减去了向量
,这时,每一个
都变成了
(
)。此时假设函数变成了以下的式子:
换句话说,从
中减去
完全不影响假设函数的预测结果!这表明前面的 softmax 回归模型中存在冗余的参数。更正式一点来说, Softmax 模型被过度参数化了。对于任意一个用于拟合数据的假设函数,可以求出多组参数值,这些参数得到的是完全相同的假设函数
。
进一步而言,如果参数
是代价函数
的极小值点,那么
同样也是它的极小值点,其中
可以为任意向量。因此使
最小化的解不是唯一的。(有趣的是,由于
仍然是一个凸函数,因此梯度下降时不会遇到局部最优解的问题。但是 Hessian 矩阵是奇异的/不可逆的,这会直接导致采用牛顿法优化就遇到数值计算的问题)
注意,当
时,我们总是可以将
替换为
(即替换为全零向量),并且这种变换不会影响假设函数。因此我们可以去掉参数向量
(或者其他
中的任意一个)而不影响假设函数的表达能力。实际上,与其优化全部的
个参数
(其中
),我们可以令
,只优化剩余的
个参数,这样算法依然能够正常工作。
在实际应用中,为了使算法实现更简单清楚,往往保留所有参数
,而不任意地将某一参数设置为 0。但此时我们需要对代价函数做一个改动:加入权重衰减。权重衰减可以解决 softmax 回归的参数冗余所带来的数值问题。
权重衰减
我们通过添加一个权重衰减项
来修改代价函数,这个衰减项会惩罚过大的参数值,现在我们的代价函数变为:
有了这个权重衰减项以后 (
),代价函数就变成了严格的凸函数,这样就可以保证得到唯一的解了。 此时的 Hessian矩阵变为可逆矩阵,并且因为
是凸函数,梯度下降法和 L-BFGS 等算法可以保证收敛到全局最优解。
为了使用优化算法,我们需要求得这个新函数
的导数,如下:
通过最小化
,我们就能实现一个可用的 softmax 回归模型。
Softmax回归与Logistic 回归的关系
当类别数
时,softmax 回归退化为 logistic 回归。这表明 softmax 回归是 logistic 回归的一般形式。具体地说,当
时,softmax 回归的假设函数为:
利用softmax回归参数冗余的特点,我们令
,并且从两个参数向量中都减去向量
,得到:
因此,用
来表示
,我们就会发现 softmax 回归器预测其中一个类别的概率为
,另一个类别概率的为
,这与 logistic回归是一致的。
input_data代码
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================== """Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import gzip
import os
import tempfile import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
TensorFlow代码:
# coding:utf-8
import input_data
import tensorflow as tf
mnist = input_data.read_data_sets("Image/", one_hot=True)
x=tf.placeholder(tf.float32,[None,784]) #创建存储样本的表
W=tf.Variable(tf.zeros([784,10])) #创建变换矩阵W
b=tf.Variable(tf.zeros([10])) #创建偏置常量b
#学习的是W与b
y=tf.nn.softmax(tf.matmul(x,W)+b)#设置好模型放入softmax回归函数中
y_=tf.placeholder("float",[None,10])#用于存储真是的数据标签
#利用交叉熵作为coastFunction
cross_entropy=-tf.reduce_sum(y_*tf.log(y))
#利用梯度下降方法最小化coastFunction
train_step=tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
#初始化所有变量
init=tf.global_variables_initializer()
sess=tf.Session()
sess.run(init)
for i in range(1000):
#每次随机抓取100个数据点进行训练
bach_xs,bach_ys=mnist.train.next_batch(100)
sess.run(train_step,feed_dict={x:bach_xs,y_:bach_ys})
#训练结束
#计算精度
#tf.equal 该函数计算矩阵对应元素相等 返回对比结果返回布尔值 argmax返回最大值的索引
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
#tf.cast把布尔转化为float
accuracy=tf.reduce_mean(tf.cast(correct_prediction,"float"))
#输出结果
print sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels})
机器学习框架Tensorflow数字识别MNIST的更多相关文章
- TensorFlow 之 手写数字识别MNIST
官方文档: MNIST For ML Beginners - https://www.tensorflow.org/get_started/mnist/beginners Deep MNIST for ...
- keras框架的MLP手写数字识别MNIST,梳理?
keras框架的MLP手写数字识别MNIST 代码: # coding: utf-8 # In[1]: import numpy as np import pandas as pd from kera ...
- Python3机器学习—Tensorflow数字识别实践
[本文出自天外归云的博客园] Windows下Anaconda+Tensorflow环境部署 1. 安装Anaconda. 2. 开始菜单 > 所有程序 > Anaconda 3 (64- ...
- 吴裕雄 python 神经网络——TensorFlow实现AlexNet模型处理手写数字识别MNIST数据集
import tensorflow as tf # 输入数据 from tensorflow.examples.tutorials.mnist import input_data mnist = in ...
- 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集
import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...
- 100天搞定机器学习|day40-42 Tensorflow Keras识别猫狗
100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0. ...
- 实战Google深度学习框架-C5-MNIST数字识别问题
5.1 MNIST数据处理 MNIST是NIST数据集的一个子集,包含60000张图片作为训练数据,10000张作为测试数据,其中每张图片代表0~9中的一个数字,图片大小为28*28(可以用一个28* ...
- Tensorflow手写数字识别---MNIST
MNIST数据集:包含数字0-9的灰度图, 图片size为28x28.训练样本:55000,测试样本:10000,验证集:5000
- keras框架的CNN手写数字识别MNIST
参考:林大贵.TensorFlow+Keras深度学习人工智能实践应用[M].北京:清华大学出版社,2018. 首先在命令行中写入 activate tensorflow和jupyter notebo ...
随机推荐
- DevExpress控件经验集合
关于GridControl的可以先看这里:http://blog.csdn.net/dong413876225/article/details/8313094 增加新行,我用了AddNewRow,但是 ...
- npy数据的保存与读取
保存 利用这种方法,保存文件的后缀名字一定会被置为.npy x = numpy.save("data_x.npy",x) 读取 data = numpy.load("da ...
- .svn文件被删除的解决办法
不小心把文件夹下的.svn给删除了,svn提交时会报如下错误: 包含工作副本管理数据的目录“/home/usa/svn/aispeech/air201102/branches/tools/res/di ...
- HTML中行内元素和块级元素的区别及转换
区别可以去找 “html文档流”相关的资料去学习,最主要的区别就是元素是占据一行还是挤在一行 转换的方式是用css的display属性 display:block; /*转换为块级*/display: ...
- ES6学习(三):数组的扩展
chapter08 数组的扩展 8.1 扩展运算符 8.1.1 扩展运算符的含义 ... 如同rest运算符的逆运算,将一个数组转换为用逗号分隔的参数序列. console.log(...[1, 2, ...
- Windosw系统——常见的问题
1. 写在某些软件后就无法打开网页,但可以上QQ. 在卸载了一些VPN或USB无线设备后,发现自己网页打不开,但是ping能ping通,也可以登录QQ. 解决办法: (1): 开始运行——regedi ...
- Docker自学纪实(二)Docker基本操作
安装docker 以CentOS7为例: 安装:yum -y install docker 启动:systemctl start docker 设置开机自启:systemctl enable dock ...
- php正则 与 js正则
PHP中的正则表达式函数 在PHP中有两套正则表达式函数库.一套是由PCRE(Perl Compatible Regular Expression)库提供的.PCRE库使用和Perl相同的语法规则实现 ...
- Python学习-django-Model操作
Django之Model操作 一.字段 AutoField(Field) - int自增列,必须填入参数 primary_key=True BigAutoField(AutoField) - bi ...
- MySQL的备份
MySQL的备份 开启MySQL的log_bin 执行查看mysql的log_bin状态 > show variables like 'log_bin%'; +----------------- ...











