传送门

还是猜结论呢

然后我们就想我们可以每次去掉尽量多的位数来保证次数最小,假装这是对的,先写一发,A了

考虑如何去掉尽量多的位数,我们可以找到最大的几位的不下降序列,把最后一个-1,后面全部改成9,这样我们就得到了一个每次去掉数字最前的一个不下降序列,然后将最后一位+1的做法

然后发现有一种情况是不合法的,举个例子:166621

这样我们第一次如果是找不下降序列,就会找到1666,减掉1后就是1665,这就不是不下降了,我们只能取159999,所以对于这种最后一位和倒数第二位是相同的不下降序列,我们要特判一下

所以考虑暴力去找最后一位数字在和他这个块里第一个位置,那么复杂度就可以到\(O(n^2)\)

考虑怎么优化,我们发现我们找到这样一个块之后,对于块内的每个元素每次都重新去找一遍这个块是不必要的,记下这个块就好了

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
void read(long long &x){
char ch;bool ok;
for(ok=0,ch=getchar();!isdigit(ch);ch=getchar())if(ch=='-')ok=1;
for(x=0;isdigit(ch);x=x*10+ch-'0',ch=getchar());if(ok)x=-x;
}
#define rg register
const int maxn=5e5+10;
char a[maxn];int ans,n,s[maxn],w[10];
int main(){
scanf("%s",a+1);n=strlen(a+1);
for(rg int i=1;i<=n;i++)s[i]=a[i]-'0';
int k=0;
for(rg int i=1;i<=n;i++){
int las=n,d=i;
if(s[k+1]>=s[k])k=0;
for(rg int j=d+1;j<=n;j++){
if(s[j]<s[j-1]){las=j-1;break;}
if(k>=j&&s[j]==s[j-1]){las=j-1;break;}
}
if(las==n){ans++;break;}
if(s[las]==s[las-1]){
k=las;
for(rg int j=las;j;j--)if(s[j]!=s[j-1]){las=j;break;}
}
ans++,s[n]++;
int now=n;s[i]=s[las]=0;
while(now&&s[now]>=10)s[now-1]+=s[now]/10,s[now]%=10,now--;
i=las;
}
printf("%d\n",ans);
}

AT2341 Increasing Numbers的更多相关文章

  1. 【AtCoder】AGC011 E - Increasing Numbers

    题解 题是真的好,我是真的不会做 智商本还是要多开啊QwQ 我们发现一个非下降的数字一定可以用不超过九个1111111111...1111表示 那么我们可以得到这样的一个式子,假如我们用了k个数,那么 ...

  2. [AGC011E] Increasing Numbers [数学]

    题面 传送门 思路 首先,我们观察一下上升数的性质 可以发现,它一定可以表示为最多9个全是1的数字的和 那么我们设$N$可以被表示成$k$个上升数的和,同时我们设$p_i=\underbrace{11 ...

  3. AtCoder Grand Contest 011 E - Increasing Numbers(灵性乱搞)

    题意: 当一个整数高位数字总不小于低位数字,或者说写成字符串之后单调不下降,称之为上升数.求一个整数最少能表示为多少个上升数的和.(n<=1e500000) 分析: 考虑那些不下降的数字,一定可 ...

  4. [agc011e]increasing numbers

    题意: 如果一个十进制非负整数的所有数位从高位到低位是不减的,我们称它为“上升数”,例如1558,11,3,0都是上升数,而10,20170312则不是: 给定整数N,求最小的k使得N能被表示为k个上 ...

  5. AGC011-E Increasing Numbers

    题意 给定一个数\(n\),\(n≤10^{500,000}\),问\(n\)最少可以拆分成几个不降数的和.一个不降数是在十进制位下,从高位往低位看,每个数都不会比高位的数更小的数 做法 不降数可以拆 ...

  6. POJ 1239 Increasing Sequences 动态规划

    题目链接: http://poj.org/problem?id=1239 Increasing Sequences Time Limit: 1000MSMemory Limit: 10000K 问题描 ...

  7. TZOJ 5963 Increasing Sequences(线性DP)

    描述 Given a string of digits, insert commas to create a sequence of strictly increasing numbers so as ...

  8. writing

    1.作文类型和结构2.作文的四个评分标准3.作文的常用句型4.作文的逻辑观点 大作文分为几类:1.A类(Argument): 这类作文实际上是比较常见的,比如:Caring for children ...

  9. [转载]VIM 教程:Learn Vim Progressively

    文章来源:http://yannesposito.com/Scratch/en/blog/Learn-Vim-Progressively/   Learn Vim Progressively   TL ...

随机推荐

  1. java try中包含return语句,finally中的return语句返回顺序

    //结论: finally 中的代码比 return 和 break 语句后执行 public static void main(String[] args) { int x=new Test.tes ...

  2. PS 滤镜——波浪 wave

    %%% Wave %%% 波浪效果 clc; clear all; close all; addpath('E:\PhotoShop Algortihm\Image Processing\PS Alg ...

  3. bzoj4010

    知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予1到N的顺序编号,预估质量最高的菜肴编号为1. 由于菜肴之间口味搭 ...

  4. G 唐纳德与子串(easy)(华师网络赛---字符串,后缀数组)(丧心病狂的用后缀自动机A了一发Easy)

    Time limit per test: 1.0 seconds Memory limit: 256 megabytes 子串的定义是在一个字符串中连续出现的一段字符.这里,我们使用 s[l…r] 来 ...

  5. 设计模式-利用职责链模式消除if

    本文是对职责链设计模式的应用(变种),所以假设读者已经掌握了职责链设计模式,职责链模式只会应景简介. 本文主要内容: 需求(ShitCode) 职责链模式简介 设计理念 代码演示(消除if) 应用总结 ...

  6. web攻击之六:DNS攻击原理与防范

    随着网络的逐步普及,网络安全已成为INTERNET路上事实上的焦点,它关系着INTERNET的进一步发展和普及,甚至关系着INTERNET的生存.可喜的是我们那些互联网专家们并没有令广大INTERNE ...

  7. java基础知识(11)---多线程

    多线程: 进程:正在进行中的程序.其实进程就是一个应用程序运行时的内存分配空间. 线程:其实就是进程中一个程序执行控制单元,一条执行路径.进程负责的是应用程序的空间的标示.线程负责的是应用程序的执行顺 ...

  8. C#设计模式(10)——组合模式

    一.概念 组合模式有时候又叫做部分-整体模式,它使我们树型结构的问题中,模糊了简单元素和复杂元素的概念,客户程序可以向处理简单元素一样来处理复杂元素,从而使得客户程序与复杂元素的内部结构解耦. 二.组 ...

  9. 项目一:项目第二天 Jquery ztree使用展示菜单数据 2、 基础设置需求分析 3、 搭建项目框架环境--ssh(复习) 4、 SpringData-JPA持久层入门案例(重点) 5、 Easyui menubutton菜单按钮使用 6、 Easyui messager消息框使用

    1. Jquery ztree使用展示菜单数据 2. 基础设置需求分析 3. 搭建项目框架环境--ssh(复习) 4. SpringData-JPA持久层入门案例(重点) 5. Easyui menu ...

  10. 安装python Matplotlib 库

    转:使用 python Matplotlib 库 绘图 及 相关问题  使用 python Matplotlib 库绘图      转:http://blog.csdn.net/daniel_ustc ...