[bzoj3270] 博物馆 [期望+高斯消元]
题面
思路
本题的点数很少,只有20个
考虑用二元组$S=(u,v)$表示甲在$u$点,乙在$v$点的状态
那么可以用$f(S)$表示状态$S$出现的概率
不同的$f$之间的转移就是通过边
转移有4种情况
对于$S=(u,v)$来说,有以下四种转移:
转移一,甲乙都选择不动,此时从$S$转移到$S$,概率为$p[u]*p[v]$
转移二,甲动乙不动,此时从$S$转移到$S'=(u',v)$,其中$u'$是异于$u$并与$u$相连的点,概率为$\frac{1-p[u]}{deg[u]}*p[v]$,其中$deg[i]$表示$i$的度数
转移三,甲不动乙动,同转移二
转移四,甲乙都动,此时从$S$转移到$S'=(u',v')$,概率为$\frac{1-p[u]}{deg[u]}\ast\frac{1-p[v]}{deg[v]}$
写完转移,发现这个图因为是联通的,所以状态之间的转移会连成一个环
这时需要用到高斯消元
构建nn个nn元方程,每个未知数对应一种状态$S$,那么每一项的系数就是上述的转移概率了
需要注意的有两点
第一,$S=(u,u)$转移到自己是没有概率的,因为这个状态已经停下了,不会再转移了
第二,出发节点的那个方程表达式的值是1,代表一个初始元位置在出发点这里
Code
```cpp
include
include
include
include
include
include
define id(i,j) (i-1)*n+j
define ll long long
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-') flag=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return reflag;
}
double a[510][510],p[110],deg[110],go[110],ans[510];
int n,m,op1,op2,cnt;
int first[110],cnte;
struct edge{
int to,next;
}e[1010];
inline void add(int u,int v){
deg[u]++;deg[v]++;
e[++cnte]=(edge){v,first[u]};first[u]=cnte;
e[++cnte]=(edge){u,first[v]};first[v]=cnte;
}
void Gauss(){
int i,j,k,num;double tmp;
for(i=1;i<=cnt;i++){
num=i;
for(j=i+1;j<=cnt;j++){
if(fabs(a[num][i])<fabs(a[j][i])) num=j;
}
if(num!=i) for(j=1;j<=cnt+1;j++) swap(a[i][j],a[num][j]);
for(j=i+1;j<=cnt;j++){
if(i!=j&&a[j][i]){
tmp=a[j][i]/a[i][i];
for(k=1;k<=cnt+1;k++) a[j][k]-=a[i][k]tmp;
}
}
}
for(i=cnt;i>=1;i--){
for(j=i+1;j<=cnt;j++) a[i][cnt+1]-=a[i][j]ans[j];
ans[i]=a[i][cnt+1]/a[i][i];
}
}
int main(){
memset(first,-1,sizeof(first));
n=read();m=read();op1=read();op2=read();int i,j,t1,t2,u1,u2,v1,v2,tid;cnt=nn;
for(i=1;i<=m;i++){
t1=read();t2=read();
add(t1,t2);
}
for(i=1;i<=n;i++) scanf("%lf",&p[i]),go[i]=(1.0-p[i])/deg[i];
for(u1=1;u1<=n;u1++){
for(u2=1;u2<=n;u2++){
tid=id(u1,u2);
a[tid][tid]=-1;
if(u1!=u2) a[tid][tid]+=p[u1]p[u2];
for(i=first[u1];~i;i=e[i].next){
v1=e[i].to;if(v1==u2) continue;
a[tid][id(v1,u2)]=go[v1]p[u2];
}
for(i=first[u2];~i;i=e[i].next){
v2=e[i].to;if(v2==u1) continue;
a[tid][id(u1,v2)]=p[u1]go[v2];
}
for(i=first[u1];~i;i=e[i].next){
for(j=first[u2];~j;j=e[j].next){
v1=e[i].to;v2=e[j].to;if(v2==v1) continue;
a[tid][id(v1,v2)]=go[v1]go[v2];
}
}
}
}
a[id(op1,op2)][cnt+1]-=1;
Gauss();
for(i=1;i<=n;i++) printf("%.6lf ",ans[id(i,i)]);
}
···
[bzoj3270] 博物馆 [期望+高斯消元]的更多相关文章
- BZOJ3270 博物馆(高斯消元+概率期望)
将两个人各自所在点视为状态,新建一个图.到达某个终点的概率等于其期望次数.那么高斯消元即可. #include<iostream> #include<cstdio> #incl ...
- 【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元
[题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解] ...
- 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元
[题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...
- [BZOJ3143][HNOI2013]游走(期望+高斯消元)
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3576 Solved: 1608[Submit][Status ...
- 【BZOJ3143】【HNOI2013】游走 && 【BZOJ3270】博物馆 【高斯消元+概率期望】
刚学完 高斯消元,我们来做几道题吧! T1:[BZOJ3143][HNOI2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小 ...
- bzoj3270 博物馆(期望+高斯消元)
Time Limit: 30 Sec Memory Limit: 128 MB 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博物馆.这座博物馆有着特别的 ...
- BZOJ_3270_博物馆_(高斯消元+期望动态规划+矩阵)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=3270 \(n\)个房间,刚开始两个人分别在\(a,b\),每分钟在第\(i\)个房间有\(p[ ...
- 【BZOJ3270】【高斯消元】博物馆
Description 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博物馆.这座博物馆有着特别的样式.它包含由m条走廊连接的n间房间,并且满足可以从任何一 ...
- BZOJ 3270: 博物馆 概率与期望+高斯消元
和游走挺像的,都是将概率转成期望出现的次数,然后拿高斯消元来解. #include <bits/stdc++.h> #define N 23 #define setIO(s) freope ...
随机推荐
- 漂亮提醒框js
<script type="text/javascript"> var filename = "PICC_V2.1.3.0_新增功能操作手册.doc" ...
- Logger日志配置级别说明及设置方法、说明
日志记录器(Logger)是日志处理的核心组件.log4j具有5种正常级别(Level).日志记录器(Logger)的可用级别Level (不包括自定义级别 Level), 以下内容就是摘自log4j ...
- MySQL中使用group_concat()函数数据被截取(有默认长度限制),谨慎!
最近在工作中遇到一个问题: 我们系统的一些逻辑处理是用存储过程实现的,但是有一天客服反馈说订单下单失败,查了下单牵扯到的产品基础资源,没有问题. 下单的存储过程中有这样两句代码: ; ; ; 执行存储 ...
- DB - RDMS - MySQL优化
慢SQL会消耗打来难过的数据库CPU资源,特别是频繁执行的慢SQL语句,会造成大量任务的堆积,CPU瞬间增大.
- 获取父窗口元素或者获取iframe中的元素(相同域名下)
jquery方法 在父窗口中获取iframe中的元素 //方法1 $("#iframe的ID").contents().find("iframe中的元素"); ...
- python__标准库 : 正则表达式(re)
re.match 尝试从字符串的起始位置匹配一个模式,如果不是起始位置匹配成功的话,match()就返回none. re.search 扫描整个字符串并返回第一个成功的匹配. 替换: re.sub(p ...
- B1008 数组元素循环右移问题 (20分)
B1008 数组元素循环右移问题 (20分) 思路 1 2 3 4 5 6 5 6 1 2 3 4 6个数,循环右移2位. 也可以理解为 先翻转 6 5 4 3 2 1 然后再两部分,分别翻转 5 6 ...
- Hive环境搭建及基本操作
伪分布式 一.安装及配置Hive 1.配置HADOOP_HOME和Hive conf 目录hive-env.sh # Set HADOOP_HOME to point to a specific ha ...
- <jsp:param>传参乱码问题
在添加参数的界面添加<%request.setCharacterEncoding("UTF-8");%> 实例代码: login_confirm.jsp <%@ ...
- P2285 [HNOI2004]打鼹鼠
P2285 [HNOI2004]打鼹鼠 题目描述 鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜欢把头探出到地面上来透透气的.根据这个特点阿牛编写了一个打鼹鼠的游戏:在一个n*n的网格中,在某 ...