Description

聪聪和睿睿最近迷上了一款叫做分裂的游戏。 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择 3 个瓶子。标号为 i,j,k, 并要保证 i < j , j < = k 且第 i 个瓶子中至少要有 1 颗巧克力豆,随后这个人从第 i 个瓶子中拿走一颗豆 子并在 j,k 中各放入一粒豆子(j 可能等于 k) 。如果轮到某人而他无法按规则取豆子,那么他将输 掉比赛。胜利者可以拿走所有的巧克力豆! 两人最后决定由聪聪先取豆子,为了能够得到最终的巧克力豆,聪聪自然希望赢得比赛。他思考 了一下,发现在有的情况下,先拿的人一定有办法取胜,但是他不知道对于其他情况是否有必胜 策略,更不知道第一步该如何取。他决定偷偷请教聪明的你,希望你能告诉他,在给定每个瓶子 中的最初豆子数后是否能让自己得到所有巧克力豆,他还希望你告诉他第一步该如何取,并且为 了必胜,第一步有多少种取法? 假定 1 < n < = 21,p[i] < = 10000

Input

输入文件第一行是一个整数t表示测试数据的组数,接下来为t组测试数据(t<=10)。每组测试数据的第一行是瓶子的个数n,接下来的一行有n个由空格隔开的非负整数,表示每个瓶子中的豆子数。

Output

对于每组测试数据,输出包括两行,第一行为用一个空格两两隔开的三个整数,表示要想赢得游戏,第一步应该选取的3个瓶子的编号i,j,k,如果有多组符合要求的解,那么输出字典序最小的一组。如果无论如何都无法赢得游戏,那么输出用一个空格两两隔开的三个-1。第二行表示要想确保赢得比赛,第一步有多少种不同的取法。

Sample Input

2
4
1 0 1 5000
3
0 0 1

Sample Output

0 2 3
1
-1 -1 -1
0
 
nim游戏&&博弈论
感觉这个题之后我对博弈的理解更加深入了。。。
定义每一个位置的巧克力豆为一个状态,总状态就是由每一个分状态(就是每一位置豆子)^而来
每一个位置的豆子的状态由其全部的后继状态抑或而来。。。显然得当找到最后位置的豆子时为先手必败状态(因为此时已经不可能有j,k来提供选择),返回0
方案就暴力枚举
如果总状态^三个分状态为0就说明如此移动能到达下一步的先手必败状态即此时的后手必败状态。。。统计方案数就ok了
 #include<cstdio>
#include<cstring>
using namespace std;
int sg[],a[],n,tot,T,ans;
int get_sg(int x){
if(x==n) return ;
if(sg[x]!=-) return sg[x];
bool mark[];
memset(mark,,sizeof(mark));
for(int i=x+;i<=n;i++)
for(int j=i;j<=n;j++)
mark[get_sg(i)^get_sg(j)]=;
for(int i=;;i++) if(!mark[i]) {
sg[x]=i; return sg[x];
}
} int main(){
scanf("%d",&T);
while(T--){
scanf("%d",&n);
memset(sg,-,sizeof(sg));
tot=ans=;
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
if(a[i]&) ans^=get_sg(i);
}
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=j;k<=n;k++){
if((ans^get_sg(i)^get_sg(j)^get_sg(k))!=) continue;
++tot;
if(tot==) printf("%d %d %d\n",i-,j-,k-);
}
if(!tot) printf("-1 -1 -1\n");
printf("%d\n",tot);
}
}

【BZOJ 1188】 [HNOI2007]分裂游戏的更多相关文章

  1. bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 733  Solved: 451[Submit][Status ...

  2. bzoj 1188 [HNOI2007]分裂游戏 SG函数 SG定理

    [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1394  Solved: 847[Submit][Status][Dis ...

  3. [BZOJ 1188] [HNOI2007] 分裂游戏 【博弈论|SG函数】

    题目链接:BZOJ - 1188 题目分析 我们把每一颗石子看做一个单个的游戏,它的 SG 值取决于它的位置. 对于一颗在 i 位置的石子,根据游戏规则,它的后继状态就是枚举符合条件的 j, k.然后 ...

  4. BZOJ 1188: [HNOI2007]分裂游戏(multi-nim)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1386  Solved: 840[Submit][Status][Discuss] Descripti ...

  5. BZOJ 1188 [HNOI2007]分裂游戏

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=1188 学习SG函数的过程中,我先看了一篇叫做 <2008-贾志豪-组合数学略述... ...

  6. bzoj 1188 : [HNOI2007]分裂游戏 sg函数

    题目链接 给n个位置, 每个位置有一个小球. 现在两个人进行操作, 每次操作可以选择一个位置i, 拿走一个小球.然后在位置j, k(i<j<=k)处放置一个小球. 问你先进行什么操作会先手 ...

  7. 【BZOJ】1188 [HNOI2007]分裂游戏

    [算法]博弈论 [题解] 我们的目的是把游戏拆分成互不影响的子游戏,考虑游戏内的转移. 如果把每堆视为子游戏,游戏之间会相互影响,不成立. 将每堆的一个石子视为子游戏,其产生的石子都在同一个子游戏中. ...

  8. BZOJ P1188 HNOI2007 分裂游戏——solution

    题目描述: (<--这个) 组合游戏,——把每个石头看做一个游戏, Multi_game——消去i上的石子后,,k上的游戏又多了一个: 于是就套用multi_game的模型即可 求解SG函数时, ...

  9. bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 973  Solved: 599[Submit][Status ...

  10. [bzoj1188][HNOI2007]分裂游戏_博弈论

    分裂游戏 bzoj-1188 HNOI-2007 题目大意:题目链接. 注释:略. 想法: 我们发现如果一个瓶子内的小球个数是奇数才是有效的. 所以我们就可以将问题变成了一个瓶子里最多只有一个球球. ...

随机推荐

  1. UIToolbar自定义背景及按钮设置

      //1.创建toolbar(MyToolbar继承UIToolbar) _myToolbar = [[MyToolbar alloc]initWithFrame:CGRectMake(kZero, ...

  2. css优先机制

    样式的优先级 (外部样式)External style sheet <(内部样式)Internal style sheet <(内联样式)Inline style (内部样式就是css写在 ...

  3. 判断checked是否选中

    if($('#checkbox-id').is(':checked')) {     // do something }

  4. CSS Sprite 图标

    HTML <body> <!-- ul.sprite>li*5>s.s-icon+a{CSS Sprite} --> <!-- 以上是Sublime Text ...

  5. JQuery Mobile 实战一

    今天我们来使用JQuery Mobile来开发一个web mobile app. 要实现的如下所示效果: 开始: 第一步:添加JS包等引用,直接去官网下载最新的JQuery Mobile 包,http ...

  6. 【转载】看懂SqlServer查询计划

    看懂SqlServer查询计划 阅读目录 开始 SQL Server 查找记录的方法 SQL Server Join 方式 更具体执行过程 索引统计信息:查询计划的选择依据 优化视图查询 推荐阅读-M ...

  7. Ajax 传统的异步登陆

    这是一个传统的异步登陆,利用Ajax实现的,主要代码如下: 客户端代码: var http; function Button1_onclick() { if (window.ActiveXObject ...

  8. Part 17 Temporary tables in SQL Server

    Temporary tables in SQL Server

  9. MFC中改变控件的大小和位置

    用CWnd类的函数MoveWindow()或SetWindowPos()可以改变控件的大小和位置. void MoveWindow(int x,int y,int nWidth,int nHeight ...

  10. ThinkPHP中的内置标签

    ThinkPHP中的内置标签 1.内置标签分类 闭合标签 <tag></tag> 开放标签 <tag /> 2.包含文件标签 主要功能:实现对文件的包含(类似于re ...