Surround the Trees

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10299    Accepted Submission(s): 3991

Problem Description

There are a lot of trees in an area. A peasant wants to buy a rope to surround all these trees. So at first he must know the minimal required length of the rope. However, he does not know how to calculate it. Can you help him? 
The diameter and length of the trees are omitted, which means a tree can be seen as a point. The thickness of the rope is also omitted which means a rope can be seen as a line.

There are no more than 100 trees.

 

Input

The input contains one or more data sets. At first line of each input data set is number of trees in this data set, it is followed by series of coordinates of the trees. Each coordinate is a positive integer pair, and each integer is less than 32767. Each pair is separated by blank.

Zero at line for number of trees terminates the input for your program.

 

Output

The minimal length of the rope. The precision should be 10^-2.
 

Sample Input

9
12 7
24 9
30 5
41 9
80 7
50 87
22 9
45 1
50 7
0
 

Sample Output

243.06
 

Source

 
Graham扫描法求凸包,凸包周长即为答案。
 //2016.10.2
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define N 105
#define eps 1e-8 using namespace std; struct point
{
double x, y;
point(){}
point(double a, double b):x(a), y(b){}
point operator-(point a){//向量减法
return point(x-a.x, y-a.y);
}
point operator+(point a){//向量加法
return point(x+a.x, y+a.y);
}
double operator*(point a){//向量叉积
return x*a.y-y*a.x;
}
bool operator<(const point a)const{
if(fabs(x-a.x)<eps)return y<a.y;//浮点数的判等不能直接用‘==’直接比较
return x<a.x;
}
double len(){//向量的模
return sqrt(x*x+y*y);
}
}p[N], s[N];//p为点,s为栈 double cp(point a, point b, point o)//向量oa,ob叉积
{
return (a-o)*(b-o);
} void Convex(point *p, int &n)//Graham扫描法,栈内为所有凸包点
{
sort(p, p+n);
int top, m;
s[] = p[]; s[] = p[]; top = ;
for(int i = ; i < n; i++)//从前往后扫
{
while(top> && cp(p[i], s[top], s[top-])>=)top--;
s[++top] = p[i];
}
m = top;
s[++top] = p[n-];
for(int i = n-; i >= ; i--)//从后往前扫
{
while(top>m && cp(p[i], s[top], s[top-])>=)top--;
s[++top] = p[i];
}
n = top;
} int main()
{
int n;
while(scanf("%d", &n)!=EOF && n)
{
for(int i = ; i < n; i++)
scanf("%lf%lf", &p[i].x, &p[i].y);
sort(p, p+n);
int cnt = ;
for(int i = ; i < n; i++)//去掉重复的点
if(fabs(p[i].x-p[cnt].x)>eps || fabs(p[i].y-p[cnt].y)>eps)
p[++cnt] = p[i];
cnt++;
if(cnt == ){
printf("0.00\n");continue;
}else if(cnt==){
printf("%.2lf\n", (p[]-p[]).len());continue;
}
Convex(p, cnt);
double ans = ;
s[cnt] = s[];
for(int i = ; i < cnt; i++)ans+=(s[i+]-s[i]).len();
printf("%.2lf\n", ans);
} return ;
}
 

HDU1392(凸包)的更多相关文章

  1. hdu1392凸包裸题

    //极角排序 #include <bits/stdc++.h> #define sqr(x) ((x)*(x)) using namespace std; ],top; struct PO ...

  2. hdu1392 Surround the Trees 凸包

    第一次做凸包,这道题要特殊考虑下,n=2时的情况,要除以二才行. 我是从最左边的点出发,每次取斜率最大的点,一直到最右边的点. 然后从最左边的点出发,每次取斜率最低的点,一直到最右边的点. #incl ...

  3. HDU-1392 Surround the Trees,凸包入门!

    Surround the Trees 此题讨论区里大喊有坑,原谅我没有仔细读题还跳过了坑点. 题意:平面上有n棵树,选一些树用绳子围成一个包围圈,使得所有的树都在这个圈内. 思路:简单凸包入门题,凸包 ...

  4. HDU1392:Surround the Trees(凸包问题)

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  5. codevs1298, hdu1392 (凸包模板)

    题意: 求凸包周长. 总结: 测试模板. 代码: #include <iostream> #include <cstdio> #include <cstring> ...

  6. 【计算几何初步-凸包-Jarvis步进法。】【HDU1392】Surround the Trees

    [科普]什么是BestCoder?如何参加? Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  7. 凸包算法(Graham扫描法)详解

    先说下基础知识,不然不好理解后面的东西 两向量的X乘p1(x1,y1),p2(x2,y2) p1Xp2如果小于零则说明  p1在p2的逆时针方向 如果大于零则说明 p1在p2的顺时针方向 struct ...

  8. NYOJ-78 圈水池,凸包裸模板!

    圈水池 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 刚做完HDU1392,就看到这个题,嗯,原代码改改就过了. 题意不多说了,会凸包的话很简单,不会也不难,这道题时限是4s ...

  9. [poj1113][Wall] (水平序+graham算法 求凸包)

    Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...

随机推荐

  1. Swift中自定义打印方法

    // 1.获取打印所在的文件 let file = ( #file as NSString).lastPathComponent // 2.获取打印所在的方法 let funcName = #func ...

  2. flex中form表单中子元素之间的距离控制

    <s:Application xmlns:fx="http://ns.adobe.com/mxml/2009" xmlns:mx="library://ns.ado ...

  3. C# 开发系列(二)

    1. 参考文档:http://www.yiibai.com/csharp/csharp_environment_setup.html 2. C# ,ASP.NET HTTP Authorization ...

  4. HDU 2859 Phalanx

    简单二维dp.o(n^3)效率过的.不知道有没有o(n^2)的解法. 为了方便点,先左右交换一下. dp[i][j]表示以[i,j]为左上角的最大对称矩阵长度 那么dp[i][j]=min(Max,d ...

  5. (译)Windsor入门教程---第二部分 引用Windsor

    原文:http://docs.castleproject.org/Windsor.Windsor-tutorial-ASP-NET-MVC-3-application-To-be-Seen.ashx ...

  6. JVM线程安全

    一.线程的调度方式 线程调度分为两种方式: 协同式调度和抢占式调度.协同式调度:线程的执行时间由线程本身控制,线程将工作执行完之后,通知操作系统切换到其他线程上.缺点:时间不可控,就算出问题,也不会通 ...

  7. PHP的Cookie、Session和跟Laravel相关的几点了解

    这两天通过对Cookie和Session的查找和了解,网上关于它们两个的基础知识点都是差不多的,也收藏了几篇不错的博客,同时自己做了些实验后,有了以下几点了解: 1.setcookie 这里有三个地方 ...

  8. 怎样判断iOS App是通过哪种途径启动的?

    http://www.cnblogs.com/daguo/p/3759514.html - (BOOL)application:(UIApplication *)application didFini ...

  9. R语言实战(四)回归

    本文对应<R语言实战>第8章:回归 回归是一个广义的概念,通指那些用一个或多个预测变量(也称自变量或解释变量)来预测响应变量(也称因变量.效标变量或结果变量)的方法.通常,回归分析可以用来 ...

  10. JNI介绍(转)

    源:JNI介绍 JNI是在学习Android HAL时必须要面临一个知识点,如果你不了解它的机制,不了解它的使用方式,你会被本地代码绕的晕头转向,JNI作为一个中间语言的翻译官在运行Java代码的An ...