题意

给你\(n\)个点的树,其中一个简单路径的集合被称为\(k\)合法当且仅当树的每个节点最多属于一条路径,且每条路径包含\(k\)个节点。对于每个\(k(k \in [1,n])\),输出最多的\(k\)合法路径。

\(n\leq 10^5\)。

分析

  • 先考虑 \(n^2\) 的做法,每次可以贪心地合并链,正确性显然。

  • 考虑根号分治,\(k<\sqrt n\) 时 \(O(n)\) 暴力,否则因为取值是单调的可以二分,取值不超过 \(\frac{n}{\sqrt n}=\sqrt n\) 个。

  • 总时间复杂度为 \(O(n\sqrt nlogn)\)。

  • 因为这里两种操作的复杂度不均衡,所以可以把块的大小稍微调大。

根号分治的特点:\(x<\sqrt n\) 暴力个数和 \(x>\sqrt n\) 单个复杂度 \(\frac{n}{\sqrt n}=\sqrt n\)。

代码

#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].lst,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=1e5 + 7;
int n,t1,low,edc;
int ans[N],mx[N],head[N],fa[N];
vector<int>gg;
struct edge{
int lst,to;
edge(){}edge(int lst,int to):lst(lst),to(to){}
}e[N*2];
void Add(int a,int b){
e[++edc]=edge(head[a],b),head[a]=edc;
e[++edc]=edge(head[b],a),head[b]=edc;
}
void dfs(int u){
go(u)if(v^fa[u]) {
fa[v]=u,dfs(v);
}
gg.pb(u);
}
int solve(int k){
int res=0;
rep(i,1,n) mx[i]=1;
for(auto u:gg){
if(fa[u]&&mx[fa[u]]!=-1&&mx[u]!=-1){
if(mx[u]+mx[fa[u]]>=k) ++res,mx[fa[u]]=-1;
else Max(mx[fa[u]],mx[u]+1);
}
}
return res;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("data.in","r",stdin);
#endif
n=gi();
rep(i,1,n-1) Add(gi(),gi());
int sz=min(400,n);
dfs(1);
ans[1]=n;
rep(i,2,sz+1) ans[i]=solve(i);;
for(int i=sz+1,j=sz+1;i<=n;i=j+1,j=i){
int l=i,r=n,tmp=solve(i);
while(l<r){
int mid=l+r+1>>1;
if(solve(mid)==tmp) l=mid;
else r=mid-1;
}
j=l;
rep(k,i,j) ans[k]=tmp;
}
rep(i,1,n) printf("%d\n",ans[i]);
return 0;
}

[CF1039D]You Are Given a Tree[贪心+根号分治]的更多相关文章

  1. CF1039D-You Are Given a Tree【根号分治,贪心】

    正题 题目链接:https://www.luogu.com.cn/problem/CF1039D 题目大意 给出\(n\)个点的一棵树,然后对于\(k\in[1,n]\)求每次使用一条长度为\(k\) ...

  2. CF1039D You Are Given a Tree 根号分治,贪心

    CF1039D You Are Given a Tree LG传送门 根号分治好题. 这题可以整体二分,但我太菜了,不会. 根号分治怎么考虑呢?先想想\(n^2\)暴力吧.对于每一个要求的\(k\), ...

  3. Codeforces 1039D You Are Given a Tree [根号分治,整体二分,贪心]

    洛谷 Codeforces 根号分治真是妙啊. 思路 考虑对于单独的一个\(k\)如何计算答案. 与"赛道修建"非常相似,但那题要求边,这题要求点,所以更加简单. 在每一个点贪心地 ...

  4. [CF1039D]You Are Given a Tree

    [CF1039D]You Are Given a Tree 题目大意: 给定一棵\(n(n\le10^5)\)个节点的树.对于每一个正整数\(k(1\le k\le n)\),求最多能找出多少条包含\ ...

  5. CF1039E Summer Oenothera Exhibition 贪心、根号分治、倍增、ST表

    传送门 感谢这一篇博客的指导(Orzwxh) $PS$:默认数组下标为$1$到$N$ 首先很明显的贪心:每一次都选择尽可能长的区间 不妨设$d_i$表示在取当前$K$的情况下,左端点为$i$的所有满足 ...

  6. CF804D Expected diameter of a tree 树的直径 根号分治

    LINK:Expected diameter of a tree 1e5 带根号log 竟然能跑过! 容易想到每次连接两个联通快 快速求出直径 其实是 \(max(D1,D2,f_x+f_y+1)\) ...

  7. CF1039E Summer Oenothera Exhibition 根号分治,LCT,ST表

    CF1039E Summer Oenothera Exhibition LG传送门 根号分治好题. 可以先看我的根号分治总结. 题意就是给出长度为\(n\)的区间和\(q\)组询问以及一个\(w\), ...

  8. 2017 ACM-ICPC 亚洲区(西安赛区)网络赛 xor (根号分治)

    xor There is a tree with nn nodes. For each node, there is an integer value a_ia​i​​, (1 \le a_i \le ...

  9. hdu 4670 Cube number on a tree(点分治)

    Cube number on a tree Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/ ...

随机推荐

  1. LeetCode题解之Binary Tree Postorder Traversal

    1.题目描述 2.问题分析 递归 3.代码 vector<int> postorderTraversal(TreeNode* root) { vector<int> v; po ...

  2. WebStorm 中 dva 项目用 start 命令需要不断重启项目问题

    问题: 用dva-cli 构建的项目,用webstorm进行开发,通过 npm start进行启动,经常修改了文件之后,浏览器里面的内容没有刷新,需要重新执行npm start才行. 解决办法: we ...

  3. 安全之路 —— 利用SVCHost.exe系统服务实现后门自启动

    简介 在Windows系统中有一个系统服务控制器,叫做SVCHost.exe,它可以用来管理系统的多组服务.它与普通的服务控制不同的是它采用dll导出的ServiceMain主函数实现服务运行,详细原 ...

  4. Linux启动一个服务后,服务的某个文件所在的目录下出现类似:systemd-private.xxxxxx的目录

    Linux的目录下面形如: [root@:vg_adn_tidbCkhsTest:172.31.17.203 /var/lib/mysql]#ll /tmp total drwxr root root ...

  5. yum安装某个包出现冲突的情况

    yum安装是非常方便的,可以自动解决依赖问题,但是有时候我们安装包会出现冲突,这个时候我们就要查找是哪些包与哪些包出现冲突,然后再针对性的解决问题. 一般来说起冲突的包会报出来,主要为两点 1.包与包 ...

  6. BZOJ 1834 网络扩容 最大流+最小费用流

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1834 题目大意: 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是 ...

  7. MySQL双主.md

    MySQL 双主配置 环境说明 系统 IP 主机名 mysql版本 CentOS 6.8 192.168.197.61 C6-node1 5.6.36 CentOS 6.8 192.168.197.6 ...

  8. 【洛谷】【单调栈】P4333 [COI2007] Patrik

    --接上一篇题解,[洛谷][单调栈]P1823音乐会的等待 关于题目大意在上一篇题解里已经说清楚了,这里不再多阐述 想看题目->戳这里 [算法分析:] 在对元素a进行判断时,如果它与栈顶元素相等 ...

  9. 修改Centos7的网卡ens32 改为eth0

    1. 修改网卡配置文件 vim /etc/sysconfig/network-scripts/ifcfg-eno16777984 修改下面两个配置项 NAME=ens32 DEVICE=ens32 改 ...

  10. linux 的常用命令---------第十阶段

    虚拟机三种网络模式 相同模式下的各个虚拟机之间都可以通信----两台虚拟机若都是 nat模式 或 桥接模式 或 仅主机模式,则这两台虚拟机之间是可以通信的. 桥接模式: (配置桥接模式的虚拟机可作为独 ...