2013长春网赛1009 hdu 4767 Bell(矩阵快速幂+中国剩余定理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4767
题意:求集合{1, 2, 3, ..., n}有多少种划分情况bell[n],最后结果bell[n] mod 95041567.
分析:首先了解三个概念:贝尔数 第二类斯特灵数 中国剩余定理
贝尔数是指基数为n的集合的划分方法的数目。

贝尔数适合递推公式:

每个贝尔数都是"第二类Stirling数"的和

贝尔数满足两个公式:(p为质数)
1) B[n+p] = B[n] + B[n+1] (mod p) ;
2) B[p^m+n] = m*B[n] + B[n+1] (mod p) .
将95041567质因数分解发现,95041567 = 31*37*41*43*47
所以B[n]%95041567可以分解为 B[n]%p(p=31,41,43,47),
我们可以先求出B[n] mod p[i]的值a[i],这样问题就转化为 X=a[i](mod p[i]),
很明显这是几个一次同余方程,最后用中国剩余定理合并就可以了。
那要怎么求B[n]%p[i]呢?
利用上面的公式(1),我们发现这是 一个递推式,所以可以利用矩阵法来求解。
我们可以构造一个大小为当前p*p的矩阵。
这样我们就可以求出任意的B[n]了
我们可以先用贝尔数递推公式
求出前50个贝尔数,因为p[i]<50,所以对于大于p[i]的贝尔数,由上面的矩阵法可以求得。
比如:| 1 1 0 0 .... 0 0 | | B[1] | | B[1+p] |
| 0 1 1 0 .... 0 0 | | B[2] | | B[2+p] |
| 0 0 1 1 .... 0 0 | | B[3] | | B[3+p] |
| .... .... .... .... | * | ..... | = | ..... |
| 0 0 0 0 .... 1 1 | | B[p-1] | | B[2p-1]|
| 1 1 0 0 .... 0 1 | | B[p] | | B[2p] |
若n=i+p,则只需求一次A*C=D,然后输出D[n-p]即D[i]就行了,
比如p[0]=31,如要求B[32]=B[1+31],只需求一次A*C=D,然后输出D[1],求B[51]则输出D[20]。
那么
若n=i+p^m,这只需求A^m*C=D,然后输出D[i]即可
到此算法结束
总结一下:
先用贝尔数递推公式求出前50个贝尔数,然后用矩阵快速幂分别求出bell[n]%p[i]赋给a[i],然后用中国剩余定理合并结果就可以求出bell[n]%95041567了。
AC代码如下:
#include<stdio.h>
#include<string.h>
#define LL __int64
int w[]={,,,,};
LL c[][][],bell[][];
LL a[];
struct Matrix{
LL m[][];
};
void init()
{
int i,j,k;
for(k=;k<;k++)
{
c[][][k]=;
for(i=;i<;i++) //c[i][j][k] 表示c(i,j)%w[k]
{
c[i][][k]=c[i][i][k]=;
for(j=;j<i;j++)
c[i][j][k]=(c[i-][j-][k]+c[i-][j][k])%w[k];
}
}
// 预处理出前50项分别取模的大小
for(k=;k<;k++)
{
bell[][k]=;
for(i=;i<;i++)
{
bell[i][k]=;
for(j=;j<i;j++)
{
bell[i][k]=(bell[i][k]+c[i-][j][k]*bell[j][k])%w[k];
}
}
}
}
LL exgcd(LL a,LL b,LL &x,LL &y) //扩展欧几里得
{
if(b==)
{
x=; y=;
return a;
}
LL d=exgcd(b,a%b,x,y);
LL t=x;
x=y;
y=t-a/b*y;
return d;
}
LL CRT(int k) //中国剩余定理
{
LL i,N=,ans=;
LL t,x,y,d;
for(i=;i<k;i++)
N*=w[i];
for(i=;i<k;i++)
{
t=N/w[i];
d=exgcd(t,w[i],x,y);
ans=(ans+x*t*a[i])%N;
}
return (ans+N)%N;
}
Matrix mul(Matrix x,Matrix y,int n,int mod) //矩阵乘法
{
int i,j,k;
Matrix tmp;
memset(tmp.m,,sizeof(tmp.m));
for(i=;i<=n;i++)
for(j=;j<=n;j++)
for(k=;k<=n;k++)
{
tmp.m[i][j]+=(x.m[i][k]*y.m[k][j])%mod;
tmp.m[i][j]%=mod;
}
return tmp;
}
Matrix quickpow(Matrix res,Matrix A,int k,int n,int mod) //矩阵快速幂模
{
int i;
memset(res.m,,sizeof(res.m));
for(i=;i<=n;i++)
res.m[i][i]=;
while(k)
{
if(k&)
res=mul(res,A,n,mod);
A=mul(A,A,n,mod);
k>>=;
}
return res;
}
LL BellNumber(int n,int p) //求bell[n][p]即bell[n]%w[p]
{
int i;
if(n<)
return bell[n][p];
Matrix A,origin,ans;
memset(A.m,,sizeof(A.m));
memset(origin.m,,sizeof(origin.m));
for(i=;i<w[p];i++)
A.m[i][i]=A.m[i][i+]=;
A.m[w[p]][]=;
A.m[w[p]][]=;
A.m[w[p]][w[p]]=;
for(i=;i<=w[p];i++)
origin.m[i][]=bell[i][p];
LL cnt=n/w[p];
n=n-w[p]*cnt;
Matrix res;
res=quickpow(res,A,cnt,w[p],w[p]);
ans=mul(res,origin,w[p],w[p]);
return ans.m[n][];
}
void solve(int n)
{
int i;
for(i=;i<;i++)
a[i]=BellNumber(n,i); //bell[n]mod各个质数的值
LL ans=CRT();
printf("%I64d\n",ans);
}
int main()
{
int t,n;
init();
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
solve(n);
}
return ;
}
2013长春网赛1009 hdu 4767 Bell(矩阵快速幂+中国剩余定理)的更多相关文章
- Bell(矩阵快速幂+中国剩余定理)
Bell Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status ...
- 2013长春网赛1005 hdu 4763 Theme Section(kmp应用)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4763 题意:给出一个字符串,问能不能在该串的前中后部找到相同的子串,输出最长的字串的长度. 分析:km ...
- 2013长春网赛1001 hdu 4759 Poker Shuffle
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4759 题意:有一堆2^n的牌,牌原先按(1,2,....k)排序,每一次洗牌都将牌分成两种情况:(1, ...
- 2013长春网赛1004 hdu 4762 Cut the Cake
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4762 题意:有个蛋糕,切成m块,将n个草莓放在上面,问所有的草莓放在同一块蛋糕上面的概率是多少.2 & ...
- 2013长春网赛1010 hdu 4768 Flyer
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4768 题意:有n个社团发传单,每个社团发给编号为A_i, A_i+C_i,A_i+2*C_i,…A_i ...
- 2013长春网赛 1006 hdu 4764 Stone(巴什博弈)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4764 题意:Tang 和 Jiang 玩一个游戏,轮流写下一个数,Tang先手,第一次Tang只能写[ ...
- HDU.2640 Queuing (矩阵快速幂)
HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的 ...
- HDU 5667 构造矩阵快速幂
HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdi ...
- HDU 6185 Covering 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6185 题意:用 1 * 2 的小长方形完全覆盖 4 * n的矩形有多少方案. 解法:小范围是一个经典题 ...
随机推荐
- 极客互联网电视不是噱头,用户体验成创维G7200核心竞争力
IT产业的迅猛发展带动了智能设备的崛起与繁荣,除已经高度普及的智能手机之外.智能电视.智能可穿戴设备等一大批新兴产品更是让消费者充分感受到了智能科技为生活所带来的变化.以智能电视为例,除了乐视 ...
- spring boot项目配置RestTemplate超时时长
配置类: @Configuration public class FeignConfiguration { @Bean(name="remoteRestTemplate") pub ...
- Swoole Timer 的应用
目录 你好,Swoole Timer 应用场景 参考文档 你好,Swoole PHP 的协程高性能网络通信引擎,使用 C/C++ 语言编写,提供了多种通信协议的网络服务器和客户端模块. Swoole ...
- kettle学习笔记(一)——入门与安装
一.概述 1.kettle是什么 Kettle是一款国外开源的ETL工具,纯java编写,可以在Window.Linux.Unix上运行,绿色无需安装,数据抽取高效稳定.中文名称叫水壶,该项目的主程序 ...
- vb用createprocess启动其他应用程序
Option Explicit Private Type PROCESS_INFORMATION hProcess As Long hThread As Long dwProcessId As Lon ...
- InkCanvas控件的使用
原文:InkCanvas控件的使用 ==>InkCanvas设置位置跟Canvas一样.通过InkCanvas.Top之类的设置,需要设置的属性有EditingMode,来自于InkCanvas ...
- Shell基础入门
目录 Shell基础入门 1.什么是Shell? 2.Shell脚本的结构 3.Shell的变量 3.1.自定义环境变量 3.2.普通变量 3.3.位置参数变量 3.4.状态变量 4.条件测试和比较 ...
- 蓝牙inquiry流程之命令下发
Android 上面的蓝牙inquiry 是在设置界面,打开蓝牙就会自动搜索周边的蓝牙设备,其最终调用到协议栈的start_discovery接口,此篇文章分析该接口的调用流程以及与controlle ...
- Neo4j 第四篇:使用C#更新和查询Neo4j
本文使用的IDE是Visual Studio 2015 ,驱动程序是Neo4j官方的最新版本:Neo4j Driver 1.3.0 ,创建的类库工程(Project)要求安装 .NET Framewo ...
- mybatis源码-解析配置文件(一)之XML的DOM解析方式
目录 简介 Java 中 XML 文件解析 解析方式 DOM 解析 XML 新建 XML 文件 DOM 操作相关类 Java 读取 XML 文件 一起学 mybatis @ 简介 在之前的文章< ...