图示全连接层

  • 如上图所示,该全链接层输入n * 4,输出为n * 2,n为batch
  • 该层有两个参数W和B,W为系数,B为偏置项
  • 该层的函数为F(x) = W*x + B,则W为4 * 2的矩阵,B 为 1 * 2 的矩阵

从公式理解全连接层

假设第N层为全连接层,输入为Xn,输出为Xn+1,其他与该层无关的信息可以忽略

  • 该层公式有Xn+1 = Fn(Xn) = W * Xn + B

前向传播

  • 已知Xn,Xn+1 = W * Xn + B, 为前向传播

反向传播

反响传播这里需要求两个梯度,loss 对 W的梯度 和 loss 对 B 的梯度,

  • loss 对 W 的梯度

    • 具体公式如下:
  • loss 对 B 的梯度
    • 具体公式如下:
  • 上面两个梯度都用到了loss 对 该层输出的梯度,所以在这层应该把loss 对该层输入的梯度传递到上一层。
    • 具体公式如下:

caffe中innerproduct的代码

前向传播

这一步在代码里面分为两步:

  • Xn+1 = W * Xn,如下图:

  • Xn+1 = Xn+1 + B,如下图:
  • 和上面推导的一样

反向传播

这里需要求三个梯度,loss 对 W的梯度 ,loss 对 B的梯度, loss 对 Xn的梯度

  • loss 对 W 的梯度

    • 公式:
    • 代码: 
    • 以上公式和推导的公式有点区别,后面加多loss 对W 的梯度,实现的是累积梯度
  • loss 对 B 的梯度
    • 公式:
    • 代码:
    • 以上公式和推导的公式有点区别,后面加多loss 对B 的梯度,实现的是累积梯度
  • loss 对 Xn 的梯度,:
    • 公式: 
    • 代码:
    • 公式和推导的并无区别

caffe源码 全连接层的更多相关文章

  1. caffe之(四)全连接层

    在caffe中,网络的结构由prototxt文件中给出,由一些列的Layer(层)组成,常用的层如:数据加载层.卷积操作层.pooling层.非线性变换层.内积运算层.归一化层.损失计算层等:本篇主要 ...

  2. caffe怎么把全连接层转成convolutional层

    caffe中有把fc层转化为conv层的,其实怎么看参数都是不变的,对alex模型来说,第一个fc层的参数是4096X9216,而conv的维度是4096x256x6x6,因此参数个数是不变的,只是需 ...

  3. caffe源码 池化层 反向传播

    图示池化层(前向传播) 池化层其实和卷积层有点相似,有个类似卷积核的窗口按照固定的步长在移动,每个窗口做一定的操作,按照这个操作的类型可以分为两种池化层: 输入参数如下: 输入: 1 * 3 * 4 ...

  4. Caffe源码阅读(1) 全连接层

    Caffe源码阅读(1) 全连接层 发表于 2014-09-15   |   今天看全连接层的实现.主要看的是https://github.com/BVLC/caffe/blob/master/src ...

  5. caffe源码 卷积层

    通俗易懂理解卷积 图示理解神经网络的卷积 input: 3 * 5 * 5 (c * h * w) pading: 1 步长: 2 卷积核: 2 * 3 * 3 * 3 ( n * c * k * k ...

  6. caffe中全卷积层和全连接层训练参数如何确定

    今天来仔细讲一下卷基层和全连接层训练参数个数如何确定的问题.我们以Mnist为例,首先贴出网络配置文件: name: "LeNet" layer { name: "mni ...

  7. caffe源码阅读

    参考网址:https://www.cnblogs.com/louyihang-loves-baiyan/p/5149628.html 1.caffe代码层次熟悉blob,layer,net,solve ...

  8. caffe源码学习

    本文转载自:https://buptldy.github.io/2016/10/09/2016-10-09-Caffe_Code/ Caffe简介 Caffe作为一个优秀的深度学习框架网上已经有很多内 ...

  9. Caffe源码中caffe.proto文件分析

    Caffe源码(caffe version:09868ac , date: 2015.08.15)中有一些重要文件,这里介绍下caffe.proto文件. 在src/caffe/proto目录下有一个 ...

随机推荐

  1. Python arange

    原文来自DeniuHe.原文链接 >>> np.arange(3) array([0, 1, 2]) >>> np.arange(1,3,0.3) array([ ...

  2. 从零开始实现ASP.NET Core MVC的插件式开发(九) - 升级.NET 5及启用预编译视图

    标题:从零开始实现ASP.NET Core MVC的插件式开发(九) - 如何启用预编译视图 作者:Lamond Lu 地址:https://www.cnblogs.com/lwqlun/p/1399 ...

  3. (2)ElasticSearch在linux环境中集成IK分词器

    1.简介 ElasticSearch默认自带的分词器,是标准分词器,对英文分词比较友好,但是对中文,只能把汉字一个个拆分.而elasticsearch-analysis-ik分词器能针对中文词项颗粒度 ...

  4. 从头学起Verilog(三):Verilog逻辑设计

    引言 经过了组合逻辑和时序逻辑的复习,终于到了Verilog部分.这里主要介绍Verilog一些基础内容,包括结构化模型.TestBench编写和仿真.真值表模型. 这部分内容不多,也都十分基础,大家 ...

  5. Python 调用Get接口

    import requests,jsonurl = 'http://localhost:30627/api/jobs/GetNuberId?id=2'req = requests.get(url)re ...

  6. 精尽 MyBatis 源码分析 - MyBatis 初始化(一)之加载 mybatis-config.xml

    该系列文档是本人在学习 Mybatis 的源码过程中总结下来的,可能对读者不太友好,请结合我的源码注释(Mybatis源码分析 GitHub 地址.Mybatis-Spring 源码分析 GitHub ...

  7. vue在移动端使用alloyfinger手势库操作图片拖拽、缩放

    最近开发一个活动需要在手机上给上传的头像加上边框.装饰,需要拖拽.手势缩放边框下的头像图片,因为是vue项目,开始尝试了vue-drag-resize这个组件,对图片拖拽支持很完美,但是无法手势缩放, ...

  8. 为什么要选择ABBYY FineReader 14?

    FineReader 是一款一体化的 OCR 和PDF编辑转换器,用于在处理文档时提高业务生产力.以人工智能为基础的 FineReader 14 提供强大且易用的工具来帮助您获得纸质文档和 PDF 中 ...

  9. 二 HTML文档基本结构

    2.1 HTML5文档结构: HTML5文档结构包括头部(head).主体(body)两大部分. 2.1.1<!DOCTYPE>声明 引用官方的DTD文件,在HTML5之前版本,如xHTM ...

  10. E - Knapsack 2 题解(超大01背包)

    题目链接 题目大意 给你一n(n<=100)个物品,物品价值最大为1e3,物品体积最多为1e9,背包最大为1e9 题目思路 如果按照平常的背包来算那么时间复杂度直接O(1e11) 这个你观察就发 ...