Hadoop官方网站:http://hadoop.apache.org/

一、Hadoop的优势

  1. 高可靠性:Hadoop底层维护多个数据副本,即使Hadoop某个计算元素或存储出现故障,也不会导致数据的丢失。
  2. 高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。
  3. 高效性:受MapReduce的思想影响,Hadoop是并行工作的,以加快任务处理速度。
  4. 高容错性:能够自动将失败的任务重新分配。

二、Hadoop的组成

2.1 HDFS架构

  1. NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。
  2. DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。
  3. Secondary NameNode(2nn):用来监控HDFS状态的辅助后台程序,每隔一段时间获取HDFS元数据的快照。

2.2 Yarn架构

2.3 MapReduce架构

MapReduce将计算过程分为两个阶段,Map和Reduce。

  1. Map阶段并处处理输入数据。
  2. Reduce阶段对Map结果进行汇总。

三、大数据生态体系

1)Sqoop:Sqoop是一款开源的工具,主要用于在Hadoop、Hive与传统的数据库(MySql)间进行数据的传递,可以将一个关系型数据库(例如

:MySQL,Oracle 等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

2)Flume:Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。

3)Kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:

(1)通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。

(2)高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。 (3)支持通过Kafka服务器和消费机集群来分区消息。

(4)支持Hadoop并行数据加载。

4)Storm:Storm用于“连续计算”,对数据流做连续查询,在计算时就将结果以流的形式输出给用户。

5)Spark:Spark是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数据进行计算。

6)Oozie:Oozie是一个管理Hdoop作业(job)的工作流程调度管理系统。

7)Hbase:HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。

8)Hive:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。

其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

9)R语言:R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。

10)Mahout:Apache Mahout是个可扩展的机器学习和数据挖掘库。

11)ZooKeeper:Zookeeper是Google的Chubby一个开源的实现。它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、

分布式同步、组服务等。ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。

3.1 系统项目架构图

四、Hadoop的重要目录结构

  1. bin目录:存放对Hadoop相关服务(HDFS,YARN)进行操作的脚本
  2. etc目录:Hadoop的配置文件目录,存放Hadoop的配置文件
  3. lib目录:存放Hadoop的本地库(对数据进行压缩解压缩功能)
  4. sbin目录:存放启动或停止Hadoop相关服务的脚本
  5. share目录:存放Hadoop的依赖jar包、文档、和官方案例

五、集群启动/停止方式

5.1 各个服务组件逐一启动/停止

(1)分别启动/停止HDFS组件

		hadoop-daemon.sh  start / stop  namenode / datanode / secondarynamenode

(2)启动/停止Yarn

		yarn-daemon.sh  start / stop  resourcemanager / nodemanager

5.2各个模块分开启动/停止(需提前配置SSH无密登录)*

(1)整体启动/停止HDFS

		start-dfs.sh   /  stop-dfs.sh

(2)整体启动/停止Yarn

		start-yarn.sh  /  stop-yarn.sh

六、Hadoop相关概念理解

6.1 Hadoop-HDFS

存储模型:字节

  • 文件线性切割成块(Block):偏移量offset(byte)
  • Block分散存储在集群节点中
  • 单一文件Block大小一致,文件与文件可以不一致
  • Block可以设置副本数,副本分散在不同节点中(副本数不要超过节点数量)
  • 文件上传可以设置Block大小和副本数
  • 已上传的文件Block副本数可以调整,大小不变
  • 只支持一次写入多次读取,同一时刻只有一个写入者
  • 可以append追加数据

6.2 Hadoop架构模型

  • 文件元数据MetaData,文件数据(元数据,数据本身)
  • (主)NameNode节点保存文件元数据:单节点 posix
  • (从)DataNode节点保存文件Block数据:多节点
  • DataNode与NameNode保持心跳,提交Block列表
  • HdfsClient与NameNode交互元数据信息
  • HdfsClient与DataNode交互文件Block数据

6.3 NameNode(NN)

  • 基于内存存储:不会和磁盘发生交换(只存在内存中,持久化)
  • NameNode主要功能:(接受客户端的读写服务,收集DataNode汇报的Block列表信息)
  • NameNode保存metadata信息包括(文件owership和permissions,文件大小,时间,Block列表:Block偏移量,位置信息,Block每副本位置(由DataNode上报))

NameNode持久化

  • NameNode的metadata信息在启动后悔加载到内存
  • metadata存储到磁盘文件名为"fsimage"
  • Block的位置信息不回保存到fsimage
  • edits记录对metadata的操作日志…最后存放在redis之中

6.4 Hadoop DataNode(DN)

  • 本地磁盘目录存储数据(Block),文件形式
  • 同时存储Block的元数据信息文件
  • 启动DN时会向NN汇报Block信息
  • 通过向NN发送心跳保持与其联系(3秒一次),如果NN10分钟没有收到DN的心跳,则认为其已经lost,并copy其上的block到其他DN。

6.5 Hadoop SecondaryNameNode(SNN)

  • 它不是NN的备份(但可以做备份),它的主要工作是帮助NN合并edits log,减少NN启动时间
  • SNN执行合并时机

根据配置文件设置的时间间隔fs.checkpoint.period 默认3600秒

根据配置文件设置edits log大小fs.checkpoint.size规定edits文件的最大值默认是64MB

SNN合并流程:

6.6 Hadoop Block的副本防止策略

  • 第一个副本:放置在上传文件的DN;如果是集群外提交,则随机挑选一台磁盘不太满,CPU不太忙的节点。
  • 第二个副本:放置在与第一个副本不同的机架的节点上。
  • 第三个副本:与第二个副本相同机架的节点。
  • 更多副本:随机节点。

6.7 Hadoop:HDFS写流程、读流程

6.8 Hadopp-安全模式

  • namenode启动的时候,首先将映像文件(fsimage)载入内存,并执行编辑日志(edits)中的各项操作
  • 一旦在内存中成功建立文件系统元数据的映射,则创建一个新的fsimage文件(这个操作不需要SecondaryNameNode)和一个空的编辑日志
  • 此刻namenode运行在安全模式,即namenode的文件系统对于客服端来说是只读的。(显示目录,显示文件内容等。写、删除、重命名都会失败)
  • 在此阶段NameNode收集各个datanode的报告,当数据达到最小副本数以上时,会被认为是“安全的”,在一定比例(可设置)的数据块被确定为“安全”后,再过若干时间,安全模式结束。
  • 当检测到副本数不足的数据块时,该块会被复制知道达到最小副本数,系统中数据块的位置并不是由namenode维护的,而是以块表形式存储在datanode中。

6.9 Hadoop-HDFS

  • 角色==进程

– namenode

–数据元存储

–内存存储,不会有磁盘交换

–持久化(fsimage,edits log)(不会持久化block的位置信息)

–block:偏移量,因为block不可以调整大小,hdfs不支持修改文件(偏移量不会改变)

–datanode

–block块

–磁盘

–面向文件,大小一样,不能调整

–副本数,调整(备份,高可用,容错/可以调整很多个,为了计算向数据移动)

–移动

–NN&DN

–心跳机制

–DN向NN汇报block信息

–client

Hadoop优势,组成的相关架构,大数据生态体系下的模式的更多相关文章

  1. Hadoop生态圈-大数据生态体系快速入门篇

    Hadoop生态圈-大数据生态体系快速入门篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.大数据概念 1>.什么是大数据 大数据(big data):是指无法在一定时间 ...

  2. Hadoop系列002-从Hadoop框架讨论大数据生态

    本人微信公众号,欢迎扫码关注! 从Hadoop框架讨论大数据生态 1.Hadoop是什么 1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构 2)主要解决,海量数据的存储和海量数据的 ...

  3. 在HDInsight中从Hadoop的兼容BLOB存储查询大数据的分析

    在HDInsight中从Hadoop的兼容BLOB存储查询大数据的分析 低成本的Blob存储是一个强大的.通用的Hadoop兼容Azure存储解决方式无缝集成HDInsight.通过Hadoop分布式 ...

  4. hadoop(一)之初识大数据与Hadoop

    前言 从今天起,我将一步一步的分享大数据相关的知识,其实很多程序员感觉大数据很难学,其实并不是你想象的这样,只要自己想学,还有什么难得呢? 学习Hadoop有一个8020原则,80%都是在不断的配置配 ...

  5. Hadoop专业解决方案-第1章 大数据和Hadoop生态圈

    一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,经过两周的努力,已经有啦初步的成果,目前第1章 大数据和Hadoop生态圈小组已经翻译完成,在此 ...

  6. Hadoop学习总结(1)——大数据以及Hadoop相关概念介绍

    一.大数据的基本概念 1.1.什么是大数据 大数据指的就是要处理的数据是TB级别以上的数据.大数据是以TB级别起步的.在计算机当中,存放到硬盘上面的文件都会占用一定的存储空间,例如: 文件占用的存储空 ...

  7. 追本溯源 解析“大数据生态环境”发展现状(CSDN)

    程学旗先生是中科院计算所副总工.研究员.博士生导师.网络科学与技术重点实验室主任.本次程学旗带来了中国大数据生态系统的基础问题方面的内容分享.大数据的发展越来越快,但是对于大数据的认知大都还停留在最初 ...

  8. 开源大数据生态下的 Flink 应用实践

    过去十年,面向整个数字时代的关键技术接踵而至,从被人们接受,到开始步入应用.大数据与计算作为时代的关键词已被广泛认知,算力的重要性日渐凸显并发展成为企业新的增长点.Apache Flink(以下简称 ...

  9. 一文带你读懂zookeeper在大数据生态的应用

    一个执着于技术的公众号 一.简述 在一群动物掌管的世界中,动物没有人类聪明的思想,为了保持动物世界的生态平衡,这时,动物管理员-zookeeper诞生了. 打开Apache zookeeper的官网, ...

随机推荐

  1. 7.24,《C Primer Plus》复习第十五章第二小题

    编写一个程序,通过命令行参数读取两个二进制字符串,对这两个二进制数使用~运算符,&运算符.|运算符,并以二进制字符串形式打印结果(如果无法使用命令行环境,可以通过交互式让程序读取字符串) 编写 ...

  2. CVE-2021-3019 漏洞细节纰漏

    CVE编号 CVE-2021-3019 lanproxy任意文件读取 该漏洞是2021年比较新的漏洞 是否需要认证:否 是否执行远程代码:否 是否执行远程命令:否 数据读取是否内网:否 漏洞软件介绍 ...

  3. 论文阅读 Characterization of Multiple 3D LiDARs for Localization and Mapping using Normal Distributions Transform

    Abstract 在这个文章里, 我们细致的比较了10种不同的3D LiDAR传感器, 用了一般的 Normal Distributions Transform (NDT) 算法. 我们按以下几个任务 ...

  4. shell实现99乘法表

    #!/usr/bin/env sh for ((x=1;x<10;x++));do for ((y=1;x>=y;y++));do printf "${y}x${x}=$(exp ...

  5. 知识图谱和neo4j的基本操作

    一.知识图谱的简介 1.知识图谱是什么 知识图谱本质上是语义网络(Semantic Network)的知识库 可以理解为一个关系图网络. 2.什么是图 图(Graph)是由节点(Vertex)和边(E ...

  6. Solon rpc 之 SocketD 协议 - RPC调用模式

    Solon rpc 之 SocketD 协议系列 Solon rpc 之 SocketD 协议 - 概述 Solon rpc 之 SocketD 协议 - 消息上报模式 Solon rpc 之 Soc ...

  7. 【MyBatis】MyBatis 连接池和事务控制

    MyBatis 连接池和事务控制 文章源码 MyBaits 连接池 实际开发中都会使用连接池,因为它可以减少获取连接所消耗的时间.具体可查看 MyBatis 数据源配置在 SqlMapConfig.x ...

  8. 搭建docker环境,安装常用应用(单机)

    ## 安装docker ```bash1.卸载系统之前dockersudo yum remove docker \ docker-client \ docker-client-latest \ doc ...

  9. 剑指Offer-连续子数组中的最大和

    题目 输入一个整型数组,数组里有正数也有负数.数组中的一个或连续多个整数组成一个子数组.求所有子数组的和的最大值.要求时间复杂度为 O(n). 输入 [1,-2,3,10,-4,7,2,-5] 返回值 ...

  10. ASP.NET Core - JWT认证实现

    一.JWT结构 JWT介绍就太多了,这里主要关注下Jwt的结构. Jwt中包含三个部分:Header(头部).Payload(负载).Signature(签名) Header:描述 JWT 的元数据的 ...