2016暑假多校联合---Substring(后缀数组)
But ?? thinks that is too easy, he wants to make this problem more interesting.
?? likes a character X very much, so he wants to know the number of distinct substrings which contains at least one X.
However, ?? is unable to solve it, please help him.
Each test case is consist of 2 lines:
First line is a character X, and second line is a string S.
X is a lowercase letter, and S contains lowercase letters(‘a’-‘z’) only.
T<=30
1<=|S|<=10^5
The sum of |S| in all the test cases is no more than 700,000.
In first case, all distinct substrings containing at least one a: a, ab, abc.
In second case, all distinct substrings containing at least one b: b, bb, bbb.
题意:输入字符x和一个字符串,求包含字符x的不同子串的个数;
思路: 后缀数组sum=length-(sa[i]+height[i])[i从1~length] sum即为子串个数,稍作修改,用nxt[i]表示在i右侧距离i最近的字符x的坐标,则
sum=length-max(nxt[sa[i]],(sa[i]+height[i])) [i从1~length]就是所求结果;
代码如下:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=1e5+;
char s[maxn];
int wa[maxn],wb[maxn],wv[maxn],wss[maxn];
int sa[maxn],ran[maxn],height[maxn]; int cmp(int *r,int a,int b,int l)
{
return r[a]==r[b]&&r[a+l]==r[b+l];
} void da(char *r,int *sa,int n,int m)
{
int i,j,p,*x=wa,*y=wb,*t;
for(i=; i<m; i++) wss[i]=;
for(i=; i<n; i++) wss[x[i]=(int)r[i]]++;
for(i=; i<m; i++) wss[i]+=wss[i-];
for(i=n-; i>=; i--) sa[--wss[x[i]]]=i;
for(j=,p=; p<n; j*=,m=p)
{
for(p=,i=n-j; i<n; i++) y[p++]=i;
for(i=; i<n; i++) if(sa[i]>=j) y[p++]=sa[i]-j; for(i=; i<n; i++) wv[i]=x[y[i]];
for(i=; i<m; i++) wss[i]=;
for(i=; i<n; i++) wss[wv[i]]++;
for(i=; i<m; i++) wss[i]+=wss[i-];
for(i=n-; i>=; i--) sa[--wss[wv[i]]]=y[i]; for(t=x,x=y,y=t,p=,x[sa[]]=,i=; i<n; i++)
x[sa[i]]=cmp(y,sa[i-],sa[i],j)?p-:p++;
}
return;
} void callheight(char *r,int *sa,int n)
{
int i,j,k=;
for(i=;i<=n;i++)
ran[sa[i]]=i;
for(i=;i<n;height[ran[i++]]=k)
for(k?k--:,j=sa[ran[i]-];r[i+k]==r[j+k];k++);
return ;
} int main()
{
int T;
int Case=;
cin>>T;
char x;
while(T--)
{
scanf(" %c",&x);
scanf("%s",s);
int len=strlen(s);
da(s,sa,len+,);
callheight(s,sa,len);
int nxt[];
int tmp=len;
long long sum=;
for(int i=len-;i>=;i--)
{
if(s[i]==x) tmp=i;
nxt[i]=tmp;
}
for(int i=;i<=len;i++)
{
sum+=(long long)(len-max(sa[i]+height[i],nxt[sa[i]]));
}
printf("Case #%d: %lld\n",Case++,sum);
}
return ;
}
2016暑假多校联合---Substring(后缀数组)的更多相关文章
- 2016暑假多校联合---Rikka with Sequence (线段树)
2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...
- 2016暑假多校联合---Windows 10
2016暑假多校联合---Windows 10(HDU:5802) Problem Description Long long ago, there was an old monk living on ...
- 2016暑假多校联合---To My Girlfriend
2016暑假多校联合---To My Girlfriend Problem Description Dear Guo I never forget the moment I met with you. ...
- 2016暑假多校联合---A Simple Chess
2016暑假多校联合---A Simple Chess Problem Description There is a n×m board, a chess want to go to the po ...
- 2016暑假多校联合---Another Meaning
2016暑假多校联合---Another Meaning Problem Description As is known to all, in many cases, a word has two m ...
- 2016暑假多校联合---Death Sequence(递推、前向星)
原题链接 Problem Description You may heard of the Joseph Problem, the story comes from a Jewish historia ...
- 2016暑假多校联合---Counting Intersections
原题链接 Problem Description Given some segments which are paralleled to the coordinate axis. You need t ...
- 2016暑假多校联合---Joint Stacks (STL)
HDU 5818 Problem Description A stack is a data structure in which all insertions and deletions of e ...
- 2016暑假多校联合---GCD
Problem Description Give you a sequence of N(N≤100,000) integers : a1,...,an(0<ai≤1000,000,000). ...
随机推荐
- MVVM架构~knockoutjs系列之一些异常的总结(永久更新)
返回目录 1 关于attr属性的问题 这个问题主要出现的IE7和360浏览器,使用attr时,需要为属性名加上单引号,代码如下: <a data-bind="attr:{'href': ...
- 题目一:打印出所有的 "水仙花数 ",所谓 "水仙花数 "是指一个三位数,其各位数字立方和等于该数本身。例如:153是一个 "水仙花数 ",因为153=1的三次方+5的三次方+3的三次方。
- cordova添加plugin
cordova添加plugin #在线安装 cordova create chankoujie com.example.chankoujie ChanKouJie cordova plugin add ...
- springboot hessian
注意把hessian的依赖换成4.0.38或者把git文件里的4.0.37放到maven私服中去,推荐使用4.0.37版本.38版本存在序列化bigdecimal的问题. <dependency ...
- .NET 程序启动调试器 .NET 测试代码耗费时间
有些场景的.NET程序,不容易设置断点,可以用下面的方法,在.NET代码中增加启动调试器的代码: if (!Debugger.IsAttached) Debugger.Launch(); .cshar ...
- 解析大型.NET ERP系统 窗体、查询、报表二次开发
详细介绍Enterprise Solution 二次开发的流程步骤,主要包括数据输入窗体(Entry Form),查询(Query/Enquiry),报表(Report)三个重要的二次开发项目. 数据 ...
- 为什么GOF的23种设计模式里面没有MVC?
GoF (Gang of Four,四人组, <Design Patterns: Elements of Reusable Object-Oriented Software>/<设计 ...
- java生成excel文件
首先下载jexcelapi_2_6_12.tar.gz,解压后将里面的jxl.jar复制到WEB-INF/lib目录下面 String filePath = request.getParameter( ...
- Cocos2d-x 3.2 学习笔记(七)Scene And Transition
Scene 场景. 是一个抽象的概念,仅被用作Node(节点)的一个子类. Scene (场景)和Node(节点)几乎相同,不同的是Scene的默认锚点在屏幕的中心. 关于场景,不得不提的是场景之间的 ...
- 增强学习(四) ----- 蒙特卡罗方法(Monte Carlo Methods)
1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基 ...