time limit per test1 second

memory limit per test256 megabytes

inputstandard input

outputstandard output

Soon a school Olympiad in Informatics will be held in Berland, n schoolchildren will participate there.

At a meeting of the jury of the Olympiad it was decided that each of the n participants, depending on the results, will get a diploma of the first, second or third degree. Thus, each student will receive exactly one diploma.

They also decided that there must be given at least min1 and at most max1 diplomas of the first degree, at least min2 and at most max2 diplomas of the second degree, and at least min3 and at most max3 diplomas of the third degree.

After some discussion it was decided to choose from all the options of distributing diplomas satisfying these limitations the one that maximizes the number of participants who receive diplomas of the first degree. Of all these options they select the one which maximizes the number of the participants who receive diplomas of the second degree. If there are multiple of these options, they select the option that maximizes the number of diplomas of the third degree.

Choosing the best option of distributing certificates was entrusted to Ilya, one of the best programmers of Berland. However, he found more important things to do, so it is your task now to choose the best option of distributing of diplomas, based on the described limitations.

It is guaranteed that the described limitations are such that there is a way to choose such an option of distributing diplomas that all n participants of the Olympiad will receive a diploma of some degree.

Input

The first line of the input contains a single integer n (3 ≤ n ≤ 3·106) — the number of schoolchildren who will participate in the Olympiad.

The next line of the input contains two integers min1 and max1 (1 ≤ min1 ≤ max1 ≤ 106) — the minimum and maximum limits on the number of diplomas of the first degree that can be distributed.

The third line of the input contains two integers min2 and max2 (1 ≤ min2 ≤ max2 ≤ 106) — the minimum and maximum limits on the number of diplomas of the second degree that can be distributed.

The next line of the input contains two integers min3 and max3 (1 ≤ min3 ≤ max3 ≤ 106) — the minimum and maximum limits on the number of diplomas of the third degree that can be distributed.

It is guaranteed that min1 + min2 + min3 ≤ n ≤ max1 + max2 + max3.

Output

In the first line of the output print three numbers, showing how many diplomas of the first, second and third degree will be given to students in the optimal variant of distributing diplomas.

The optimal variant of distributing diplomas is the one that maximizes the number of students who receive diplomas of the first degree. Of all the suitable options, the best one is the one which maximizes the number of participants who receive diplomas of the second degree. If there are several of these options, the best one is the one that maximizes the number of diplomas of the third degree.

Examples

input

6

1 5

2 6

3 7

output

1 2 3

input

10

1 2

1 3

1 5

output

2 3 5

input

6

1 3

2 2

2 2

output

2 2 2

【题目链接】:http://codeforces.com/contest/557/problem/A

【题解】



题目长(chang)得吓人。

就是让你选择每个等级的人有多少人;

优先级为1,2,3

尽量让优先级高的人人数多;

每个等级的人的人数有最小值、最大值的限制;

显然先假设让第2、3等级的人最小;

n-min2-min3分配给第一个人;

大于max1的部分再还给2和3;

2和3重复上述过程即可;



【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rei(x) scanf("%d",&x)
#define rel(x) scanf("%I64d",&x)
#define pri(x) printf("%d",x)
#define prl(x) printf("%I64d",x) typedef pair<int,int> pii;
typedef pair<LL,LL> pll; //const int MAXN = x;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0); int n;
int mi[4],ma[4]; int main()
{
//freopen("F:\\rush.txt","r",stdin);
rei(n);
rep1(i,1,3)
rei(mi[i]),rei(ma[i]);
int bpc = mi[2]+mi[3],n1,n2,n3;
if (n-bpc>=mi[1] && n-bpc<=ma[1])
{
n1 = n-bpc;
n=bpc;
}
else
if (n-bpc>ma[1])
{
n1 = ma[1];
n = n-ma[1];
}
if (n-mi[3]>=mi[2] && n-mi[3]<=ma[2])
{
n2 = n-mi[3];
n = mi[3];
}
else
if (n-mi[3]>ma[2])
{
n2 = ma[2];
n-=ma[2];
}
n3 = n;
printf("%d %d %d\n",n1,n2,n3);
return 0;
}

【55.70%】【codeforces 557A】Ilya and Diplomas的更多相关文章

  1. 【 BowWow and the Timetable CodeForces - 1204A 】【思维】

    题目链接 可以发现 十进制4 对应 二进制100 十进制16 对应 二进制10000 十进制64 对应 二进制1000000 可以发现每多两个零,4的次幂就增加1. 用string读入题目给定的二进制 ...

  2. 【22.70%】【codeforces 591C】 Median Smoothing

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  3. 【codeforces 754D】Fedor and coupons

    time limit per test4 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  4. 【codeforces 415D】Mashmokh and ACM(普通dp)

    [codeforces 415D]Mashmokh and ACM 题意:美丽数列定义:对于数列中的每一个i都满足:arr[i+1]%arr[i]==0 输入n,k(1<=n,k<=200 ...

  5. 【搜索】【并查集】Codeforces 691D Swaps in Permutation

    题目链接: http://codeforces.com/problemset/problem/691/D 题目大意: 给一个1到N的排列,M个操作(1<=N,M<=106),每个操作可以交 ...

  6. 【中途相遇法】【STL】BAPC2014 K Key to Knowledge (Codeforces GYM 100526)

    题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...

  7. 【链表】【模拟】Codeforces 706E Working routine

    题目链接: http://codeforces.com/problemset/problem/706/E 题目大意: 给一个N*M的矩阵,Q个操作,每次把两个同样大小的子矩阵交换,子矩阵左上角坐标分别 ...

  8. 【数论】【扩展欧几里得】Codeforces 710D Two Arithmetic Progressions

    题目链接: http://codeforces.com/problemset/problem/710/D 题目大意: 两个等差数列a1x+b1和a2x+b2,求L到R区间内重叠的点有几个. 0 < ...

  9. 【动态规划】【最短路】Codeforces 710E Generate a String

    题目链接: http://codeforces.com/problemset/problem/710/E 题目大意: 问写N个字符的最小花费,写一个字符或者删除一个字符花费A,将当前的字符数量翻倍花费 ...

随机推荐

  1. PatentTips - Control register access virtualization performance improvement

    BACKGROUND OF THE INVENTION A conventional virtual-machine monitor (VMM) typically runs on a compute ...

  2. 平衡树之RB-tree

    #include <memory> template<class T> struct rb_node { T key; bool color;//true red | fals ...

  3. 用for和while循环求e的值[e=1+1/1!+1/2!+1/3!+1/4!+1/5!+...+1/n!]

    /*编敲代码,依据下面公式求e的值. 要求用两种方法计算: 1)for循环.计算前50项 2)while循环,直至最后一项的值小于10-4 e=1+1/1!+1/2!+1/3!+1/4!+1/5!+. ...

  4. 记号(notation)的学习

    数学的记号(notation) 记号具体代表什么含义,取决于你的定义: 比如这样的 d⃗  一个向量,每个分量 d(i) 表示的是从初始结点 v 到当前节点 vi 的最短路径:也即这样的一个向量的每一 ...

  5. JS实现文件另存为

    JS实现文件另存为 //下载平面图 function downPlan() { var oPop = window.open(src, "", "width=1, hei ...

  6. 记2018/4/29 qbxt 测试

    记 2018/4/29  qbxt 测试(提高基础班) 简单的 NOIP 模拟赛 竞赛时间: 2018 年 4 月 29 日 13:30-17:00 题目名称 乘法 求和 计数 输入文件名 mul.i ...

  7. ArcGIS Engine 线段绘制

    转自ArcGIS Engine 线段绘制研究 基本步骤 构建形状 1. 创建 IPoint IPoint m_Point = new PointClass(); m_Point.PutCoords(x ...

  8. 【Todo】Zookeeper系列文章

    http://nileader.blog.51cto.com/1381108/1068033

  9. [Phonegap+Sencha Touch] 移动开发76 让cordova app訪问远端站点也能调用cordova插件功能

    原文链接:http://blog.csdn.net/lovelyelfpop/article/details/50735395 我相信.应该会有一些cordova开发人员想过实现以下这种app: 使用 ...

  10. 4.auto详解

    #include <iostream> using namespace std; template <calss T1,class T2> auto add(T1 t1, T2 ...