不多说,直接上代码。

-- ::, INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - Initializing JVM Metrics with processName=JobTracker, sessionId=
-- ::, WARN [org.apache.hadoop.mapreduce.JobSubmitter] - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
-- ::, WARN [org.apache.hadoop.mapreduce.JobSubmitter] - No job jar file set. User classes may not be found. See Job or Job#setJar(String).
-- ::, INFO [org.apache.hadoop.mapreduce.lib.input.FileInputFormat] - Total input paths to process :
-- ::, INFO [org.apache.hadoop.mapreduce.JobSubmitter] - number of splits:
-- ::, INFO [org.apache.hadoop.mapreduce.JobSubmitter] - Submitting tokens for job: job_local1173601391_0001
-- ::, INFO [org.apache.hadoop.mapreduce.Job] - The url to track the job: http://localhost:8080/
-- ::, INFO [org.apache.hadoop.mapreduce.Job] - Running job: job_local1173601391_0001
-- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter set in config null
-- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
-- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for map tasks
-- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local1173601391_0001_m_000000_0
-- ::, INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
-- ::, INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@65bb90dc
-- ::, INFO [org.apache.hadoop.mapred.MapTask] - Processing split: file:/D:/Code/MyEclipseJavaCode/myMapReduce/data/secondarySort/secondarySort.txt:+
-- ::, INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) kvi ()
-- ::, INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb:
-- ::, INFO [org.apache.hadoop.mapred.MapTask] - soft limit at
-- ::, INFO [org.apache.hadoop.mapred.MapTask] - bufstart = ; bufvoid =
-- ::, INFO [org.apache.hadoop.mapred.MapTask] - kvstart = ; length =
-- ::, INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
-- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] -
-- ::, INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
-- ::, INFO [org.apache.hadoop.mapred.MapTask] - Spilling map output
-- ::, INFO [org.apache.hadoop.mapred.MapTask] - bufstart = ; bufend = ; bufvoid =
-- ::, INFO [org.apache.hadoop.mapred.MapTask] - kvstart = (); kvend = (); length = /
-- ::, INFO [org.apache.hadoop.mapred.MapTask] - Finished spill
-- ::, INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local1173601391_0001_m_000000_0 is done. And is in the process of committing
-- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
-- ::, INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local1173601391_0001_m_000000_0' done.
-- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local1173601391_0001_m_000000_0
-- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - map task executor complete.
-- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for reduce tasks
-- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local1173601391_0001_r_000000_0
-- ::, INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
-- ::, INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@59b59452
-- ::, INFO [org.apache.hadoop.mapred.ReduceTask] - Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@73d5cf65
-- ::, INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - MergerManager: memoryLimit=, maxSingleShuffleLimit=, mergeThreshold=, ioSortFactor=, memToMemMergeOutputsThreshold=
-- ::, INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - attempt_local1173601391_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
-- ::, INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher# about to shuffle output of map attempt_local1173601391_0001_m_000000_0 decomp: len: to MEMORY
-- ::, INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read bytes from map-output for attempt_local1173601391_0001_m_000000_0
-- ::, INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: , inMemoryMapOutputs.size() -> , commitMemory -> , usedMemory ->
-- ::, INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - EventFetcher is interrupted.. Returning
-- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - / copied.
-- ::, INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - finalMerge called with in-memory map-outputs and on-disk map-outputs
-- ::, INFO [org.apache.hadoop.mapred.Merger] - Merging sorted segments
-- ::, INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with segments left of total size: bytes
-- ::, INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merged segments, bytes to disk to satisfy reduce memory limit
-- ::, INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging files, bytes from disk
-- ::, INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging segments, bytes from memory into reduce
-- ::, INFO [org.apache.hadoop.mapred.Merger] - Merging sorted segments
-- ::, INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with segments left of total size: bytes
-- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - / copied.
-- ::, INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
-- ::, INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local1173601391_0001_r_000000_0 is done. And is in the process of committing
-- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - / copied.
-- ::, INFO [org.apache.hadoop.mapred.Task] - Task attempt_local1173601391_0001_r_000000_0 is allowed to commit now
-- ::, INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - Saved output of task 'attempt_local1173601391_0001_r_000000_0' to file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/secondarySort/_temporary//task_local1173601391_0001_r_000000
-- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce > reduce
-- ::, INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local1173601391_0001_r_000000_0' done.
-- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local1173601391_0001_r_000000_0
-- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce task executor complete.
-- ::, INFO [org.apache.hadoop.mapreduce.Job] - Job job_local1173601391_0001 running in uber mode : false
-- ::, INFO [org.apache.hadoop.mapreduce.Job] - map % reduce %
-- ::, INFO [org.apache.hadoop.mapreduce.Job] - Job job_local1173601391_0001 completed successfully
-- ::, INFO [org.apache.hadoop.mapreduce.Job] - Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
Map-Reduce Framework
Map input records=
Map output records=
Map output bytes=
Map output materialized bytes=
Input split bytes=
Combine input records=
Combine output records=
Reduce input groups=
Reduce shuffle bytes=
Reduce input records=
Reduce output records=
Spilled Records=
Shuffled Maps =
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
Shuffle Errors
BAD_ID=
CONNECTION=
IO_ERROR=
WRONG_LENGTH=
WRONG_MAP=
WRONG_REDUCE=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=

代码

IntPair.java

package zhouls.bigdata.myMapReduce.SecondarySort;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable; //第一步:自定义IntPair类,将示例数据中的key/value封装成一个整体作为Key,同时实现 WritableComparable 接口并重写其方法。
/**
* 自己定义的key类应该实现WritableComparable接口
*/
public class IntPair implements WritableComparable<IntPair>{//类似对应于如TextPair
int first;//第一个成员变量
int second;//第二个成员变量 public void set(int left, int right){//赋值
first = left;
second = right;
}
public int getFirst(){//读值
return first;
}
public int getSecond(){//读值
return second;
} //反序列化,从流中的二进制转换成IntPair
public void readFields(DataInput in) throws IOException{
first = in.readInt();
second = in.readInt();
} //序列化,将IntPair转化成使用流传送的二进制
public void write(DataOutput out) throws IOException{
out.writeInt(first);
out.writeInt(second);
} //key的比较
public int compareTo(IntPair o){
// TODO Auto-generated method stub
if (first != o.first){
return first < o.first ? - : ;
}else if (second != o.second)
{
return second < o.second ? - : ;
}else
{
return ;
}
} @Override
public int hashCode(){
return first * + second;
}
@Override
public boolean equals(Object right){
if (right == null)
return false;
if (this == right)
return true;
if (right instanceof IntPair){
IntPair r = (IntPair) right;
return r.first == first && r.second == second;
}else{
return false;
}
}
}

SecondarySort.java

package zhouls.bigdata.myMapReduce.SecondarySort;

import zhouls.bigdata.myMapReduce.Join.JoinRecordAndStationName;

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; /*
SecondarySort内容是
40 20
40 10
40 30
40 5
40 1
30 30
30 20
30 10
30 1
20 20
20 10
20 1
50 50
50 40
50 30
50 20
50 10
50 1
*/ public class SecondarySort extends Configured implements Tool{
// 自定义map
public static class Map extends Mapper<LongWritable, Text, IntPair, IntWritable>{
private final IntPair intkey = new IntPair();
private final IntWritable intvalue = new IntWritable(); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException{
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
int left = ;
int right = ;
if (tokenizer.hasMoreTokens()){
left = Integer.parseInt(tokenizer.nextToken());
if (tokenizer.hasMoreTokens())
right = Integer.parseInt(tokenizer.nextToken());
intkey.set(left, right);//设为k2
intvalue.set(right);//设为v2
context.write(intkey,intvalue);//写入intkeyk2,intvalue是v2
// context.write(new IntPair(intkey),new IntWritable(intvalue));等价 }
}
} //第二步:自定义分区函数类FirstPartitioner,根据 IntPair 中的first实现分区。
/**
* 分区函数类。根据first确定Partition。
*/
public static class FirstPartitioner extends Partitioner< IntPair, IntWritable>{
@Override
public int getPartition(IntPair key, IntWritable value,int numPartitions){
return Math.abs(key.getFirst() * ) % numPartitions;
}
} //第三步:自定义 SortComparator 实现 IntPair 类中的first和second排序。本课程中没有使用这种方法,而是使用 IntPair 中的compareTo()方法实现的。
//第四步:自定义 GroupingComparator 类,实现分区内的数据分组。
/**
*继承WritableComparator
*/
public static class GroupingComparator extends WritableComparator{
protected GroupingComparator(){
super(IntPair.class, true);
}
@Override
//Compare two WritableComparables.
public int compare(WritableComparable w1, WritableComparable w2){
IntPair ip1 = (IntPair) w1;
IntPair ip2 = (IntPair) w2;
int l = ip1.getFirst();
int r = ip2.getFirst();
return l == r ? : (l < r ? - : );
}
} // 自定义reduce
public static class Reduce extends Reducer<IntPair, IntWritable, Text, IntWritable>{
private final Text left = new Text();
public void reduce(IntPair key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException{
left.set(Integer.toString(key.getFirst()));//设为k3
for (IntWritable val : values){
context.write(left, val);//写入left是k3,val是v3
// context.write(new Text(left),new IntWritable(val));等价
}
}
} public int run(String[] args)throws Exception{
// TODO Auto-generated method stub
Configuration conf = new Configuration();
Path mypath=new Path(args[]);
FileSystem hdfs = mypath.getFileSystem(conf);
if (hdfs.isDirectory(mypath)){
hdfs.delete(mypath, true);
} Job job = new Job(conf, "secondarysort");
job.setJarByClass(SecondarySort.class); FileInputFormat.setInputPaths(job, new Path(args[]));//输入路径
FileOutputFormat.setOutputPath(job, new Path(args[]));//输出路径 job.setMapperClass(Map.class);// Mapper
job.setReducerClass(Reduce.class);// Reducer
//job.setNumReducerTask(3); job.setPartitionerClass(FirstPartitioner.class);// 分区函数
//job.setSortComparatorClass(KeyComparator.Class);//本课程并没有自定义SortComparator,而是使用IntPair自带的排序
job.setGroupingComparatorClass(GroupingComparator.class);// 分组函数 job.setMapOutputKeyClass(IntPair.class);
job.setMapOutputValueClass(IntWritable.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class); return job.waitForCompletion(true) ? : ;
} /**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception{
// TODO Auto-generated method stub // String[] args0={"hdfs://HadoopMaster:9000/secondarySort/secondarySort.txt",
// "hdfs://HadoopMaster:9000/out/secondarySort"}; String[] args0={"./data/secondarySort/secondarySort.txt",
"./out/secondarySort"}; int ec =ToolRunner.run(new Configuration(),new SecondarySort(),args0);
System.exit(ec);
}
}

Hadoop MapReduce编程 API入门系列之二次排序(十六)的更多相关文章

  1. Hadoop MapReduce编程 API入门系列之wordcount版本2(六)

    这篇博客,给大家,体会不一样的版本编程. 代码 package zhouls.bigdata.myMapReduce.wordcount4; import java.io.IOException; i ...

  2. Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)

    不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce. ...

  3. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本3(九)

    不多说,直接上干货! 下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 下面是版本2. Hadoop MapReduce编程 API入门系列之挖掘气象数 ...

  4. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本2(十)

    下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 这篇博文,包括了,实际生产开发非常重要的,单元测试和调试代码.这里不多赘述,直接送上代码. MRUni ...

  5. Hadoop MapReduce编程 API入门系列之join(二十六)(未完)

    不多说,直接上代码. 天气记录数据库 Station ID Timestamp Temperature 气象站数据库 Station ID Station Name 气象站和天气记录合并之后的示意图如 ...

  6. Hadoop MapReduce编程 API入门系列之Crime数据分析(二十五)(未完)

    不多说,直接上代码. 一共12列,我们只需提取有用的列:第二列(犯罪类型).第四列(一周的哪一天).第五列(具体时间)和第七列(犯罪场所). 思路分析 基于项目的需求,我们通过以下几步完成: 1.首先 ...

  7. Hadoop MapReduce编程 API入门系列之网页排序(二十八)

    不多说,直接上代码. Map output bytes=247 Map output materialized bytes=275 Input split bytes=139 Combine inpu ...

  8. Hadoop MapReduce编程 API入门系列之计数器(二十七)

    不多说,直接上代码. MapReduce 计数器是什么?    计数器是用来记录job的执行进度和状态的.它的作用可以理解为日志.我们可以在程序的某个位置插入计数器,记录数据或者进度的变化情况. Ma ...

  9. Hadoop MapReduce编程 API入门系列之倒排索引(二十四)

    不多说,直接上代码. 2016-12-12 21:54:04,509 INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - Initializing JV ...

随机推荐

  1. 完全掌握vuex

    公司项目中大量的使用了vue,感觉对vue知识的掌握也越来越熟练了,录制视频教程也让我受益匪浅,自己成长的同时,我更希望帮助其他前端小伙伴一起成长.这篇文章我们主要讲解vuex. vuex是一个专门为 ...

  2. 模拟登录新浪微博(Python)

    PC 登录新浪微博时, 在客户端用js预先对用户名.密码都进行了加密, 而且在POST之前会GET 一组参数,这也将作为POST_DATA 的一部分. 这样, 就不能用通常的那种简单方法来模拟POST ...

  3. python利用numpy存取文件

    NumPy提供了多种存取数组内容的文件操作函数.保存数组数据的文件可以是二进制格式或者文本格式.二进制格式的文件又分为NumPy专用的格式化二进制类型和无格式类型. numpy格式的文件可以保存为后缀 ...

  4. js数组操作find查找特定值结合es6特性

    js数组操作find查找特定值结合es6特性

  5. 连接mysql时遇到的问题

    1.报错:The server time zone value '???ú±ê×??±??' is unrecognized or represents 解决方法:在jdbc连接的url后面加上ser ...

  6. Django—链接MySQL

    Djalgo基础配置方法 静态文件配置方法 1 所有的静态文件都放在 static 文件夹下,例如Bootstrap值类的第三方库,通常 static 文件下会创建 css image js 文件,用 ...

  7. 移动端自动化测试-WTF Appium

    手机App分为两大类,原生App(Native App)和混合APP(Hybrid App) 原生App(Native App) 原生App实际就是我们所常见的传统App开发模式,云端数据存储+App ...

  8. 05.Python高级编程

    1 ==,is的使用 is 是比较两个引用是否指向了同一个对象(地址引用比较). == 是比较两个对象是否相等.(比较的数值) 2 深拷贝.浅拷贝.copy.copy 2.1 浅拷贝 浅拷贝: 拷贝的 ...

  9. openldap+openssh+jumpserver实现跳板机监控系统

    首先感谢 http://www.jumpserver.org/ 提供的优秀跳板机系统. 我们把跳板机系统经过二次开发主要是 弃用角色功能使用ldap自动登录. 添加登录后临时认证. 上传下载我们自己在 ...

  10. keycode键盘 按键 - 键码 对应表

    字母和数字键的键码值(keyCode) 按键 键码 按键 键码 按键 键码 按键 键码 A 65 J 74 S 83 1 49 B 66 K 75 T 84 2 50 C 67 L 76 U 85 3 ...