本文在主成分分析(PCA)原理总结用scikit-learn学习主成分分析(PCA)的内容基础上做了一些笔记和补充,强调了我认为重要的部分,其中一些细节不再赘述。

Jupiter notebook版本参见我的github: https://github.com/konatasick/machine_learning_note/blob/master/pca.ipynb

PCA的思想

PCA(Principal components analysis,主成分分析)是一种降维算法,它通过使样本间方差尽量大来尽可能保留原始数据的相关关系。

 

PCA的算法

1) 对所有的样本进行中心化

2) 计算样本的协方差矩阵

3) 对协方差矩阵进行特征值分解

4)取出最大的m个特征值对应的特征向量, 将所有的特征向量标准化后,组成特征向量矩阵W。

5)对样本集中的每一个样本转化为新的样本

scikit-learn的sklearn.decomposition.PCA参数介绍

官方文档:sklearn.decomposition.PCA

Parameters:

n_components:这个代表了需要降维的维度。当它是整数时,代表了保留的维度数量。当它是一个介于0~1之间的数时,代表了主成分的方差所占的最小比例,例如0.95代表取超过95%的量的维度。当它为‘mle’,同时svd_solver == ‘full’时,系统会根据MLE算法自动选择维度。(此时svd_solver == ‘auto’将会被解读为svd_solver == ‘full’)

svd_solver:默认是‘auto’,即在剩下的‘full’, ‘arpack’, ‘randomized’中根据情况选一个。‘full’是传统的PCA,‘arpack’, ‘randomized’适用于数据量大的场景,其区别在于前者是通过scipy.sparse.linalg.svds实现。

Attributes*:

components_ : 主成分的投影坐标,代表了数据的最大方差的方向,根据explainedvariance由大到小排列。维度是m*n,其中n是原始数据的维度,m是降维后的维度。

explainedvariance和explained_varianceratio:前者是每一维的方差,后者是所占比例:

explained_varianceratio=explained_variance/sum(explainedvariance

维度是m, 当m=n时,sum(explained_varianceratio)=1。

mean_:每个feature的平均值。在pca算法的第一步,需要对feature归一化,此时的平均值保留在这里。

ncomponents :模型实际的降维数,即m。

 

PCA实例

用scikit-learn学习主成分分析(PCA)中示范了降维的操作。

首先我们生成随机数据并可视化,代码如下:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
from sklearn.datasets.samples_generator import make_blobs
# X为样本特征,Y为样本簇类别, 共1000个样本,每个样本3个特征,共4个簇
X, y = make_blobs(n_samples=10000, n_features=3, centers=[[3,3, 3], [0,0,0], [1,1,1], [2,2,2]], cluster_std=[0.2, 0.1, 0.2, 0.2],
random_state =9)
fig = plt.figure()
ax = Axes3D(fig, rect=[0, 0, 1, 1], elev=30, azim=20)
plt.scatter(X[:, 0], X[:, 1], X[:, 2],marker='o')

输出如图:

现在我们来进行降维,从3维降到2维,代码如下:

from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca.fit(X)
X_new = pca.transform(X)
plt.scatter(X_new[:, 0], X_new[:, 1],marker='o')
plt.show()

输出如图:

在很多应用中,当我们将数据降维并用于训练后,训练出来的模型之后的输出也是降维后的数据,需要还原回原始维度。这时候需要将pca算法进行逆运算:

X_old=np.dot(Xnew,pca.components)+pca.mean_

即将新数据和components_相乘并加上平均值。

使用上文的例子,代码如下:

X_old=np.dot(X_new,pca.components_)+pca.mean_
fig = plt.figure()
ax = Axes3D(fig, rect=[0, 0, 1, 1], elev=30, azim=20)
plt.scatter(X_old[:, 0], X_old[:, 1], X_old[:, 2],marker='o')

输出如图:

可以看到,数据即是投影到最大方差方向但并未进行降维时的样子。

*parameter的命名后面没有下划线,而attribute的命名后面都有下划线,以此区分。

scikit-learn使用PCA降维小结的更多相关文章

  1. 关于PCA降维中遇到的python问题小结

    由于论文需要,开始逐渐的学习CNN关于文本抽取的问题,由于语言功底不好,所以在学习中难免会有很多函数不会用的情况..... ̄へ ̄ 主要是我自己的原因,但是我更多的把语言当成是一个工具,需要的时候查找就 ...

  2. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  3. 在SCIKIT中做PCA 逆运算 -- 新旧特征转换

    PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...

  4. 一步步教你轻松学主成分分析PCA降维算法

    一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简 ...

  5. 在SCIKIT中做PCA 逆变换 -- 新旧特征转换

    PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...

  6. [综] PCA降维

    http://blog.json.tw/using-matlab-implementing-pca-dimension-reduction 設有m筆資料, 每筆資料皆為n維, 如此可將他們視為一個mx ...

  7. 机器学习公开课笔记(8):k-means聚类和PCA降维

    K-Means算法 非监督式学习对一组无标签的数据试图发现其内在的结构,主要用途包括: 市场划分(Market Segmentation) 社交网络分析(Social Network Analysis ...

  8. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  9. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

随机推荐

  1. ArcMap中用python的split方法提取字段的值

    提取PROPERTY_L字段空格分隔符前面的地址编号 提取前:5105 ABERDEEN LANE 提取后:5105 提取的表达式:!PROPERTY_L!.split(" ")[ ...

  2. DDL-表的管理

    一.创建表 ★create table [if not exists] 表名(    字段名 字段类型 [约束],    字段名 字段类型 [约束],    ...    字段名 字段类型 [约束] ...

  3. Javascript--将十进制数字转换成罗马数字显示

    下午在FCC(FreeCodeCamp)中文网上做到一道练习题:将给定的数字转换成罗马数字.折磨了一个多小时,终于能把基本功能给实现了.过程如下: 关于罗马数字 罗马数字的详细介绍可见百度,或者罗马数 ...

  4. docker故障问题修复

    systemctl start docker启动 systemctl restart docker重启 执行 vi /etc/sysconfig/selinux , 把 selinux 属性值改为di ...

  5. 在js内生成PDF文件并下载的功能实现(不调用后端),以及生成pdf时换行的格式不被渲染,word-break:break-all

    在js内生成PDF文件并下载的功能实现(不调用后端),以及生成pdf时换行的格式不被渲染,word-break:break-all 前天来了个新需求, 有一个授权书的文件要点击下载, 需要在前端生成, ...

  6. iOS 基于APNS消息推送原理与实现(包括JAVA后台代码)

    Push的原理: Push 的工作机制可以简单的概括为下图   图中,Provider是指某个iPhone软件的Push服务器,这篇文章我将使用.net作为Provider. APNS 是Apple ...

  7. 从零开始搭建vue移动端项目到上线的步骤

    初始化项目 1.在安装了node.js的前提下,使用以下命令 npm install --g vue-cli 2.在将要构建项目的目录下 vue init webpack myproject(项目目录 ...

  8. /usr/bin/python与/usr/bin/env python的区别

    Infi-chu: http://www.cnblogs.com/Infi-chu/ /usr/bin/env python执行时,先查找python解释器的路径,然后执行./usr/bin/pyth ...

  9. 核密度估计 Kernel Density Estimation (KDE) MATLAB

    对于已经得到的样本集,核密度估计是一种可以求得样本的分布的概率密度函数的方法: 通过选取核函数和合适的带宽,可以得到样本的distribution probability,在这里核函数选取标准正态分布 ...

  10. SpringMVC 中,当前台传入多个参数时,可将参数封装成一个bean类

    在实际业务场景中,当前台通过 url 向后台传送多个参数时,可以将参数封装成一个bean类,在bean类中对各个参数进行非空,默认值等的设置. 前台 url ,想后台传送两个参数,userName 和 ...