scikit-learn使用PCA降维小结
本文在主成分分析(PCA)原理总结和用scikit-learn学习主成分分析(PCA)的内容基础上做了一些笔记和补充,强调了我认为重要的部分,其中一些细节不再赘述。
Jupiter notebook版本参见我的github: https://github.com/konatasick/machine_learning_note/blob/master/pca.ipynb
PCA的思想
PCA(Principal components analysis,主成分分析)是一种降维算法,它通过使样本间方差尽量大来尽可能保留原始数据的相关关系。
PCA的算法
1) 对所有的样本进行中心化
2) 计算样本的协方差矩阵
3) 对协方差矩阵进行特征值分解
4)取出最大的m个特征值对应的特征向量, 将所有的特征向量标准化后,组成特征向量矩阵W。
5)对样本集中的每一个样本转化为新的样本
scikit-learn的sklearn.decomposition.PCA参数介绍
官方文档:sklearn.decomposition.PCA
Parameters:
n_components:这个代表了需要降维的维度。当它是整数时,代表了保留的维度数量。当它是一个介于0~1之间的数时,代表了主成分的方差所占的最小比例,例如0.95代表取超过95%的量的维度。当它为‘mle’,同时svd_solver == ‘full’时,系统会根据MLE算法自动选择维度。(此时svd_solver == ‘auto’将会被解读为svd_solver == ‘full’)
svd_solver:默认是‘auto’,即在剩下的‘full’, ‘arpack’, ‘randomized’中根据情况选一个。‘full’是传统的PCA,‘arpack’, ‘randomized’适用于数据量大的场景,其区别在于前者是通过scipy.sparse.linalg.svds实现。
Attributes*:
components_ : 主成分的投影坐标,代表了数据的最大方差的方向,根据explainedvariance由大到小排列。维度是m*n,其中n是原始数据的维度,m是降维后的维度。
explainedvariance和explained_varianceratio:前者是每一维的方差,后者是所占比例:
explained_varianceratio=explained_variance/sum(explainedvariance)
维度是m, 当m=n时,sum(explained_varianceratio)=1。
mean_:每个feature的平均值。在pca算法的第一步,需要对feature归一化,此时的平均值保留在这里。
ncomponents :模型实际的降维数,即m。
PCA实例
用scikit-learn学习主成分分析(PCA)中示范了降维的操作。
首先我们生成随机数据并可视化,代码如下:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
from sklearn.datasets.samples_generator import make_blobs
# X为样本特征,Y为样本簇类别, 共1000个样本,每个样本3个特征,共4个簇
X, y = make_blobs(n_samples=10000, n_features=3, centers=[[3,3, 3], [0,0,0], [1,1,1], [2,2,2]], cluster_std=[0.2, 0.1, 0.2, 0.2],
random_state =9)
fig = plt.figure()
ax = Axes3D(fig, rect=[0, 0, 1, 1], elev=30, azim=20)
plt.scatter(X[:, 0], X[:, 1], X[:, 2],marker='o')
输出如图:
现在我们来进行降维,从3维降到2维,代码如下:
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca.fit(X)
X_new = pca.transform(X)
plt.scatter(X_new[:, 0], X_new[:, 1],marker='o')
plt.show()
输出如图:
在很多应用中,当我们将数据降维并用于训练后,训练出来的模型之后的输出也是降维后的数据,需要还原回原始维度。这时候需要将pca算法进行逆运算:
X_old=np.dot(Xnew,pca.components)+pca.mean_
即将新数据和components_相乘并加上平均值。
使用上文的例子,代码如下:
X_old=np.dot(X_new,pca.components_)+pca.mean_
fig = plt.figure()
ax = Axes3D(fig, rect=[0, 0, 1, 1], elev=30, azim=20)
plt.scatter(X_old[:, 0], X_old[:, 1], X_old[:, 2],marker='o')
输出如图:
可以看到,数据即是投影到最大方差方向但并未进行降维时的样子。
*parameter的命名后面没有下划线,而attribute的命名后面都有下划线,以此区分。
scikit-learn使用PCA降维小结的更多相关文章
- 关于PCA降维中遇到的python问题小结
由于论文需要,开始逐渐的学习CNN关于文本抽取的问题,由于语言功底不好,所以在学习中难免会有很多函数不会用的情况..... ̄へ ̄ 主要是我自己的原因,但是我更多的把语言当成是一个工具,需要的时候查找就 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- 在SCIKIT中做PCA 逆运算 -- 新旧特征转换
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...
- 一步步教你轻松学主成分分析PCA降维算法
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简 ...
- 在SCIKIT中做PCA 逆变换 -- 新旧特征转换
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...
- [综] PCA降维
http://blog.json.tw/using-matlab-implementing-pca-dimension-reduction 設有m筆資料, 每筆資料皆為n維, 如此可將他們視為一個mx ...
- 机器学习公开课笔记(8):k-means聚类和PCA降维
K-Means算法 非监督式学习对一组无标签的数据试图发现其内在的结构,主要用途包括: 市场划分(Market Segmentation) 社交网络分析(Social Network Analysis ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
随机推荐
- Xcode缓存数据清除
1. 移除 APP 打包的ipa历史版本(Archives) 不可恢复,就是你打的包,如果需要dysm文件,及时备份 路径:~/Library/Developer/Xcode/Archives 2. ...
- angular2jsonp如何跨域请求百度API进行定位
前提,百度api的申请,不会的可以百度一下,下面是连接 http://lbsyun.baidu.com/index.php?title=webapi/ip-api 1.appMoudle里引入 imp ...
- vue+echarts实现可拖动节点的折现图(支持拖动方向和上下限的设置)
本篇文档主要是利用echarts实现可拖动节点的折现图,在echarts中找到了一个demo,传送门:https://echarts.baidu.com/examples/editor.html?c= ...
- sublime Text3安装 markdownediting 报错 解决记录
看了一下官方文档,也是醉了,都怪自己的无知. 在安装时候不要打开.md的文件,因为你里面有可能有一些语法错误,所以会导致报错. 解决方法关闭其他文件,在重新安装! 官方解释: 参考文档:Trouble ...
- linux 学习第十一天
一.配置服务说明 1.1.linux系统中的一切都是文件 1.2.配置一个服务就是在修改去配置文件 1.3.要想让新的配置文件立即生效,需要重启对应的服务 二.配置网卡 2.1.编辑配置文件 vim ...
- Bootstrap源码解读之栅格化篇
本文纯属自己研究所写笔记,如果有错误还请多多指教提出 版心(container) 版心:class名为.container的容器,其版心的宽度在各个屏幕设备下是不一样的值,版心两边就是留白. 各尺寸下 ...
- 小白该如何学习Linux操作系统
一. 选择适合自己的Linux发行版 谈到linux的发行版别,太多了,可能谁也不能给出一个准确的数字,但是有一点是能够必定的,linux正在变得越来越盛行, 面临这么多的Linux 发行版,打算从别 ...
- 【python安装】Windows上安装和创建python开发环境
1. 在 windows10 上安装python开发环境 Linux和Mac OS都自带python环境,但是Windows没有,所以需要自行安装. 第1步:访问 python官网,下载Windows ...
- Fiddler无所不能——之测试开发攻城狮必备利器
Fiddler无所不能——之测试开发攻城狮必备利器 1.模拟真实网络环境4g网.3g网络.2g网络.弱网.请求超时 开启弱网Rules——Performance——勾选Simulate Modem S ...
- python 模块路径查找 及 添加
**** python 模块路径查找: 通过模块的__file__属性来确定: **** 模块路径添加: 方法一:函数添加1 import sys2 查看sys.path3 添加sys.path.ap ...