uva1423 巧用拓扑排序
对于一个序列 a1 a2 ... an 我们可以计算出一个符号矩阵A, 其中Si,j 为 a1+...+aj 的正负号,(连加和大于0则Sij=+ 小于0 Sij=- 等于0 则Sij=0), 根据序列A不难算出上述符号矩阵。你的任务是求解它的“逆问题” , 及给出一个符号矩阵,找出一个对应的序列。输入保证存在一个满足条件的序列,其中每个整数的绝对值均不超过10
解 连续和转化为前缀和之差,设Bi=a1+...+ai 规定B0=0 则矩阵中的任意一项都等价于连个Bi 相减之后的正负号,例如 , 第x行y列的符号为正号 ax+...+ay>0 By-Bx-1>0, 转化为已知B0,B1,...,Bn,的一些大小关系,求他们的值,这个问题通过拓扑排序完成。
#include <iostream>
#include <cstdio>
#include <string.h>
#include<vector>
#include <algorithm>
using namespace std;
const int INF=;
char str[];
vector<int> same[];
vector<int> to[];
int dgreed[];
int G[];
bool use[];
int ans[];
void solve(int loc, int v){
for(int i=; i<same[loc].size(); ++i)
ans[ same[loc][i] ]=v;
}
int main()
{
int cas;
scanf("%d",&cas);
for(int cc=; cc<=cas; ++cc){
int n;
scanf("%d",&n);
scanf("%s",str);
int loc=;
memset(dgreed,,sizeof(dgreed));
memset(use,false,sizeof(use));
for(int i=; i<=n; ++i) to[i].clear(),ans[i]=INF,same[i].clear();
for(int i=; i<=n; ++i)
for(int j=i; j<=n; ++j ){
if(str[loc]==''){
same[i-].push_back(j);
same[j].push_back(i-);
}else if(str[loc]=='+'){
to[i-].push_back(j);
dgreed[j]++;
}else {
to[j].push_back(i-);
dgreed[i-]++;
}
loc++;
}
for(int i=; i<n+;++i){
int k=;
for(int j=; j<n+; ++j)
if(use[j]==false&&dgreed[j]==){
k=j; break;
}
G[i]=k; use[k]=true;
for(int j=; j<to[k].size(); ++j){
dgreed[to[k][j]]--;
}
}
loc=;
for(int i=; i<n+; ++i)
if(G[i]==) {
loc=i; break;
}
ans[]=;
int v=-;
solve(,);
for(int i=loc-; i>=; --i){
if(ans[ G[i] ] == INF){
ans[ G[i] ] =v--;
}
solve(G[i],ans[G[i]]);
}
v=;
for(int i=loc+; i<=n; ++i){
if(ans[ G[i] ] == INF){
ans[ G[i] ] =v++;
}
solve(G[i],ans[G[i]]);
}
for(int i=; i<=n ;++i)
printf("%d%c",ans[i]-ans[i-],i==n?'\n':' ');
}
return ;
}
uva1423 巧用拓扑排序的更多相关文章
- LA4255/UVa1423 Guess 拓扑排序 并查集
评分稍微有一点过分..不过这个题目确确实实很厉害,对思维训练也非常有帮助. 按照套路,我们把矩阵中的子段和化为前缀和相减的形式.题目就变成了给定一些前缀和之间的大小关系,让你构造一组可行的数据.这个东 ...
- [USACO12DEC]第一!First! (Trie树,拓扑排序)
题目链接 Solution 感觉比较巧的题啊... 考虑几点: 可以交换无数次字母表,即字母表可以为任意形态. 对于以其他字符串为前缀的字符串,我们可以直接舍去. 因为此时它所包含的前缀的字典序绝对比 ...
- 算法与数据结构(七) AOV网的拓扑排序
今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...
- 有向无环图的应用—AOV网 和 拓扑排序
有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...
- 【BZOJ-2938】病毒 Trie图 + 拓扑排序
2938: [Poi2000]病毒 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 609 Solved: 318[Submit][Status][Di ...
- BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...
- 图——拓扑排序(uva10305)
John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task i ...
- Java排序算法——拓扑排序
package graph; import java.util.LinkedList; import java.util.Queue; import thinkinjava.net.mindview. ...
- poj 3687(拓扑排序)
http://poj.org/problem?id=3687 题意:有一些球他们都有各自的重量,而且每个球的重量都不相同,现在,要给这些球贴标签.如果这些球没有限定条件说是哪个比哪个轻的话,那么默认的 ...
随机推荐
- RecyclerView的通用适配器,和滚动时不加载图片的封装
对于RecyclerView我们需要使用RecyclerAdapter,使用方式与ListViewAdapter类似,具体代码大家可以在网上搜索,这里就只教大家使用封装后的简洁RecyclerAdap ...
- MySQL主从复制与读写分离[修改]
作者:lixiuran 日期:2014年5月2日 备注[本人根据网上资源修改,参考http://www.cnblogs.com/luckcs/articles/2543607.html] 测试环境 ...
- vertical-align负值和margin-bottom负值的区别
先看一下vertical-align在W3C当中的值有哪一些: 可是它有数值这一说确实很少提起,我们来看这么一段代码: <!DOCTYPE html> <html lang=&quo ...
- [020]Sencha Ext JS 6.0使用教程2
本节主要以典型例子介绍如何用Sencha Ext JS6.0进行项目开发 入门阶段总是比较难的,掌握了基本操作步骤,使用方法,架构思维,开发起来还是满顺利,开心的,自己又能掌握一门新技术,又能进步,主 ...
- Objective-c官方文档翻译 类的定义
类是对象的蓝图. 一个类是描述了对象的行为和属性.例如NSString的一个实例.他的类提供了各种的方法来转化和表示他的内部字符的表示. 每个类的实例都包含了这个类的属性和行为.例如每个NSSt ...
- Android英文文档翻译系列(5)——VPNService
API14位于android.net.VpnService 类概述|Class OverviewVpnService is a base class for applications to ext ...
- win7(64)使用vim碰到的奇怪问题
一直使用conemu做控制台使用vim,操作系统win7 64位,一直用的很好. 今天使用gvim打开文件发现c:\program file(x86)\vim\_vimrc不生效,最奇怪的是,采用控制 ...
- js的声明提前
由于js声明提前的作用,所以在js中后面定义的函数也可以再前面使用. 不过,项目中看到过这样的写法 var a = function(){}, b = function(){}; 这种写法使代码看上去 ...
- Windows Phone 几种页面间传递数据的方式
首先,我们要引用:using Microsoft.Phone.Shell; 第一种: // 导航到新页面 NavigationService.Navigate(new Uri("/Detai ...
- IIS 6.0上部署ASP.NET MVC2.0
在IIS7.5及8.0上部署都没有成功,对于身份验证会出现问题,据说是要安装什么东西,在这里说下IIS6.0的配置吧,下面是使用.net 4.0,自己可以选择所需的版本. 再此之前先确定web是用到了 ...