【bzoj4006】[JLOI2015]管道连接 斯坦纳树+状压dp
题目描述
给出一张 $n$ 个点 $m$ 条边的无向图和 $p$ 个特殊点,每个特殊点有一个颜色。要求选出若干条边,使得颜色相同的特殊点在同一个连通块内。输出最小边权和。
输入
第一行包含三个整数 n;m;p,表示情报站的数量,可以建立的通道数量和重要情报站的数
输出
输出一行一个整数,表示任意相同频道的情报站之间都建立通道连接所花费的最少资源总量。
样例输入
5 8 4
1 2 3
1 3 2
1 5 1
2 4 2
2 5 1
3 4 3
3 5 1
4 5 1
1 1
1 2
2 3
2 4
样例输出
4
题解
斯坦纳树+状压dp
由于点数很小,因此求出斯坦纳树,求法可以参考 【bzoj2595】[Wc2008]游览计划 。
那么对于本题,由于不要求选出的只有一个连通块,因此不能直接拿到答案。
考虑状压dp,设 $g[i]$ 表示状态为 $i$ 的所有颜色满足同颜色连通的最小代价。那么如果只有一个连通块则答案就是斯坦纳树的 $f[v][i]$ ,其中 $v$ 是所有颜色状态为 $i$ 的点对应的状态。不只有一个连通块的话则枚举子集转移。
时间复杂度 $O(3^p·n+2^p·m\log n)=O(能过)$
#include <queue>
#include <cstdio>
#include <cstring>
#include <utility>
using namespace std;
typedef pair<int , int> pr;
priority_queue<pr> q;
int head[1010] , to[6010] , len[6010] , next[6010] , cnt , c[15] , d[15] , f[1030][1010] , vis[1030][1010] , g[1030];
inline void add(int x , int y , int z)
{
to[++cnt] = y , len[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
}
int main()
{
int n , m , p , i , j , k , x , y , z;
scanf("%d%d%d" , &n , &m , &p);
memset(f , 0x3f , sizeof(f));
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d%d" , &x , &y , &z) , add(x , y , z) , add(y , x , z);
for(i = 1 ; i <= p ; i ++ ) scanf("%d%d" , &c[i] , &d[i]) , f[1 << (i - 1)][d[i]] = 0;
for(i = 1 ; i <= n ; i ++ ) f[0][i] = 0;
for(i = 1 ; i < 1 << p ; i ++ )
{
for(j = i ; j ; j = i & (j - 1))
for(k = 1 ; k <= n ; k ++ )
f[i][k] = min(f[i][k] , f[j][k] + f[i ^ j][k]);
for(j = 1 ; j <= n ; j ++ ) q.push(pr(-f[i][j] , j));
while(!q.empty())
{
x = q.top().second , q.pop();
if(vis[i][x]) continue;
vis[i][x] = 1;
for(j = head[x] ; j ; j = next[j])
if(f[i][to[j]] > f[i][x] + len[j])
f[i][to[j]] = f[i][x] + len[j] , q.push(pr(-f[i][to[j]] , to[j]));
}
}
memset(g , 0x3f , sizeof(g));
for(i = 1 ; i < 1 << p ; i ++ )
{
k = 0;
for(j = 1 ; j <= p ; j ++ )
if(i & (1 << (c[j] - 1)))
k |= (1 << (j - 1));
for(j = 1 ; j <= n ; j ++ ) g[i] = min(g[i] , f[k][j]);
for(j = i ; j ; j = i & (j - 1)) g[i] = min(g[i] , g[j] + g[i ^ j]);
}
printf("%d\n" , g[(1 << p) - 1]);
return 0;
}
【bzoj4006】[JLOI2015]管道连接 斯坦纳树+状压dp的更多相关文章
- BZOJ4006: [JLOI2015]管道连接(斯坦纳树,状压DP)
Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1171 Solved: 639[Submit][Status][Discuss] Descripti ...
- bzoj 4006 管道连接 —— 斯坦纳树+状压DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4006 用斯坦纳树求出所有关键点的各种连通情况的代价,把这个作为状压(压的是集合选择情况)的初 ...
- BZOJ4006 JLOI2015 管道连接(斯坦纳树生成森林)
4006: [JLOI2015]管道连接 Time Limit: 30 Sec Memory Limit: 128 MB Description 小铭铭最近进入了某情报部门,该部门正在被如何建立安全的 ...
- bzoj 4006 [JLOI2015]管道连接(斯坦纳树+状压DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4006 [题意] 给定n点m边的图,连接边(u,v)需要花费w,问满足使k个点中同颜色的 ...
- BZOJ 4006 Luogu P3264 [JLOI2015]管道连接 (斯坦纳树、状压DP)
题目链接: (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=4006 (luogu)https://www.luogu.org/probl ...
- 【BZOJ4774/4006】修路/[JLOI2015]管道连接 斯坦纳树
[BZOJ4774]修路 Description 村子间的小路年久失修,为了保障村子之间的往来,法珞决定带领大家修路.对于边带权的无向图 G = (V, E),请选择一些边,使得1 <= i & ...
- 洛谷P3264 [JLOI2015]管道连接 (斯坦纳树)
题目链接 题目大意:有一张无向图,每条边有一定的花费,给出一些点集,让你从中选出一些边,用最小的花费将每个点集内的点相互连通,可以使用点集之外的点(如果需要的话). 算是斯坦纳树的入门题吧. 什么是斯 ...
- bzoj1402 Ticket to Ride 斯坦纳树 + 状压dp
给定\(n\)个点,\(m\)条边的带权无向图 选出一些边,使得\(4\)对点之间可达,询问权值最小为多少 \(n \leqslant 30, m \leqslant 1000\) 首先看数据范围,\ ...
- BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)
Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 2030 Solved: 986[Submit][Status][ ...
随机推荐
- [hdu6051]If the starlight never fade-[欧拉函数+原根]
Description 传送门 Solution orz大佬yxq..本题神仙 设g为P的原根. 设$x=g^{a}$,$y=g^{b}$. 由于$(g^{a}+g^{b})^{i}\equiv (g ...
- 北京Uber优步司机奖励政策(4月18日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- 【LG3236】[HNOI2014]画框
[LG3236][HNOI2014]画框 题面 洛谷 题解 和这题一模一样. 将最小生成树换成\(KM\)即可. 关于复杂度,因为决策点肯定在凸包上,且\(n\)凸包的期望点数为\(\sqrt {\l ...
- apache-kylin-2.5.2-bin-cdh57与cdh-5.13.0集群整合运用
1.下载kylin最新版apache-kylin-2.5.2-bin-cdh57: 2.解压配置环境变量: export BASE_PATH="/opt/cloudera/parcels/C ...
- MSP-EZ430U_02板子测试使用
1. 实物如下 2. 先上电,显示驱动没安装 3. 找到驱动的位置,不过实际上安装IAR for msp430之后,驱动就自动的识别了.
- [POJ3041]Asteroids
Asteroids 好久没打过网络流相关的题了...... 题意:一个矩阵n×n,有m个东西,一次去掉一整行或一整列,问最少次数. 题解:匈牙利. 把每行变成一个点(X集合),每列变成一个点(Y集合) ...
- 记Thinkpad的一次扩容升级经历
俗话说:" 工欲善其事,必先利其器" 阅读目录: 背景 目标 准备 友情提示 制作引导盘 分区及备份 拆机装盘 重装系统 写在结束的 参考资料 背景: 作为一个近六年的IT从业Co ...
- python 的入门
时光匆匆,大一的时间过的很快,从大一上学期学的c开始,就感觉出c的结构很复杂,但是不可否认,学习c和汇编等涉及到系统底层知识才会有可能开发出属于自己知识产权的东西,然而,python以其简约性,丰富的 ...
- 1.5 JAVA的高并发编程
一.多线程的基本知识 1.1进程与线程的介绍(上个博客1.4中已经详细介绍进程和线程) 程序运行时在内存中分配自己独立的运行空间,就是进程 线程:它是位于进程中,负责当前进程中的某个具备独立运行资格的 ...
- Zabbix部署-LNMP环境
原文发表于cu:2016-05-05 参考文档: LNMP安装:http://www.osyunwei.com/archives/7891.html 一.环境 Server:CentOS-7-x86_ ...