Scaring the Birds

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1257    Accepted Submission(s): 420

Problem Description
It’s harvest season now! 

Farmer John plants a lot of corn. There are many birds living around his corn field. These birds keep stealing his corn all the time. John can't stand with that any more. He decides to put some scarecrows in the field to drive the birds away. 

John's field can be considered as an N×N grid which has N×N intersections. John plants his corn on every intersection at first. But as time goes by, some corn were destroyed by rats or birds so some vacant intersections were left. Now John wants to put scarecrows on those vacant intersections and he can put at most one scarecrow on one intersection. Because of the landform and the different height of corn, every vacant intersections has a scaring range R meaning that if John put a scarecrow on it, the scarecrow can only scare the birds inside the range of manhattan distance R from the intersection.

The figure above shows a 7×7 field. Assuming that the scaring range of vacant intersection (4,2) is 2, then the corn on the marked intersections can be protected by a scarecrow put on intersection (4,2). 

Now John wants to figure out at least how many scarecrows he must buy to protect all his corn.

 
Input
There are several test cases. 

For each test case: 

The first line is an integer N ( 2 <= N <= 50 ) meaning that John's field is an N×N grid. 

The second line is an integer K ( 0<= K <= 10) meaning that there are K vacant intersections on which John can put a scarecrow.

The third line describes the position of K vacant intersections, in the format of r
1,c
1,r
2,c
2 …. r
K,c
k . (r
i,c
i) is the position of the i-th intersection and 1 <= r
1,c
1,r
2,c
2…. r
K,c
k <= N. 

The forth line gives the scaring range of all vacant intersections, in the format of R
1,R
2…R
K and 0 <= R
1,R
2…R
K <= 2 × N. 

The input ends with N = 0.
 
Output
For each test case, print the minimum number of scarecrows farmer John must buy in a line. If John has no way to protect all the corn, print -1 instead.
 
Sample Input
4
2
2 2 3 3
1 3
4
2
2 2 3 3
1 4
0
 
Sample Output
-1
1
 
Source
 


题目大意:给你一张地图,然后有n个地点是空的用来放稻草人,其它的都是田地,每个稻草人位置有自己的横纵坐标以及可以保护田地的"半径"fabs(x-a)+fabs(y-b)<=r。问你找最少的稻草人使得所有田地被保护。



  解题思路:根据这个题目,以后可以把一个集合的所有子集全部摸出来了。开始想用DFS写,后来觉得求最小的,应该用BFS,最后思路全乱了,还是回到最初的枚举所有的状态数目。由于状态数目是1<<p,即为2^p,然后把0~1<<p转化为p位二进制存储,刚好唯一,就是题目中的VIS数组。

  题目地址:Scaring the Birds

AC代码:
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdio>
using namespace std;
int n,p,res; //p指的是有多少个空地可以放稻草人
int visi[55][55];
int vis[12]; //点访问的情况
int num; //记录用了多少点
struct mq
{
int x;
int y;
int r;
};
mq node[12]; void init()
{
memset(visi,0,sizeof(visi));
memset(vis,0,sizeof(vis));
for(int i=0;i<p;i++)
visi[node[i].x][node[i].y]=1;
} void fun()
{
int j,k,ra,rb,ca,cb;
num=0;
for(int i=0;i<p;i++)
{
if(vis[i])
{
num++;
ra=node[i].x-node[i].r;
rb=node[i].x+node[i].r;
ca=node[i].y-node[i].r;
cb=node[i].y+node[i].r;
if(ra<1) ra=1;
if(rb>n) rb=n;
if(ca<1) ca=1;
if(cb>n) cb=n;
for(j=ra;j<=rb;j++)
for(k=ca;k<=cb;k++)
if(abs(j-node[i].x)+abs(k-node[i].y)<=node[i].r) //范围之类
visi[j][k]=1;
}
}
} int over() //是否全部覆盖
{
int i,j;
for(i=1; i<=n; i++)
{
for(j=1; j<=n; j++)
if(!visi[i][j])
{
return 0;
}
}
return 1;
} void solve()
{
int i,j;
res=100;
for(i=0;i<(1<<p);i++) //枚举所有的状态
{
init();
int tmp=i;
for(j=0;j<p;j++)
{
vis[j]=tmp&1; //刚好二进制是这样存储,唯一! 所有枚举子集
tmp>>=1;
//cout<<vis[j]<<" ";
}
//cout<<endl;
fun();
if(over()) //可以覆盖了
res=min(res,num);
}
}
int main()
{
int i;
while(scanf("%d",&n)&&n)
{
scanf("%d",&p);
for(i=0; i<p; i++)
scanf("%d%d",&node[i].x,&node[i].y);
for(i=0; i<p; i++)
scanf("%d",&node[i].r);
init();
if(over()) //说明不需要稻草人。。。
{
puts("0");
continue;
}
solve();
if(res==100) puts("-1"); //说明覆盖不了
else printf("%d\n",res);
}
return 0;
} //31MS


HDU 4462Scaring the Birds(枚举所有状态)的更多相关文章

  1. hdu 4057 AC自己主动机+状态压缩dp

    http://acm.hdu.edu.cn/showproblem.php?pid=4057 Problem Description Dr. X is a biologist, who likes r ...

  2. HDU 6607 Time To Get Up(状态压缩+枚举)

    题目网址: http://acm.hdu.edu.cn/showproblem.php?pid=6077 思路: 先预处理一下,将每个数字块的“X”看作1,“.”看作0,进行状态压缩转换成二进制数,用 ...

  3. HDU 1074 Doing Homework (dp+状态压缩)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1074 题目大意:学生要完成各科作业, 给出各科老师给出交作业的期限和学生完成该科所需时间, 如果逾期一 ...

  4. Effective Objective-C 2.0 — 第五条用枚举表示状态、选项、状态码 (未看完)

    枚举是一种常量命名方式.某个对象所经历的各种状态就可以定义为一个简单的枚举集.(enumeration set) 编译器会为枚举分配一个独有的编号,从0开始,每个枚举递增1.实现枚举所用的数据类型取决 ...

  5. hdu 5067 Harry And Dig Machine (状态压缩dp)

    题目链接 bc上的一道题,刚开始想用这个方法做的,因为刚刚做了一个类似的题,但是想到这只是bc的第二题, 以为用bfs水一下就过去了,结果MLE了,因为bfs的队列里的状态太多了,耗内存太厉害. 题意 ...

  6. HDU 5778 abs (枚举)

    abs 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5778 Description Given a number x, ask positive ...

  7. BZOJ1688|二进制枚举子集| 状态压缩DP

    Disease Manangement 疾病管理 Description Alas! A set of D (1 <= D <= 15) diseases (numbered 1..D) ...

  8. HDU 5724 Chess(SG函数+状态压缩)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=5724 题意: 现在有一个n*20的棋盘,上面有一些棋子,双方每次可以选择一个棋子把它移动到其右边第一 ...

  9. HDU 4739 Zhuge Liang's Mines (状态压缩+背包DP)

    题意 给定平面直角坐标系内的N(N <= 20)个点,每四个点构成一个正方形可以消去,问最多可以消去几个点. 思路 比赛的时候暴力dfs+O(n^4)枚举写过了--无意间看到有题解用状压DP(这 ...

随机推荐

  1. 【C#/WPF】.Net生成二维码QRCode的工具

    先马 http://qrcodenet.codeplex.com/ 使用该工具WPF生成二维码的简单例子: 前台XAML准备一个Image控件显示二维码. string qrcodeStr = &qu ...

  2. win10设置删除文件提示框

    显示桌面,找到回收站   点击鼠标右键,点击“属性菜单”   勾选“显示删除对话框”   点击“应用”,点击“确定”.   测试一下吧,从电脑删除del删除一个文件.如下图所示,弹出了提示框.

  3. eclipse中使用maven创建项目JDK版本默认是1.5解决方法

    请看解决方案: 1. 修改maven的settings.xml文件. 添加以下行,jdk版本改为自己需要的版本: <profile> <id>jdk-1.7</id> ...

  4. Node.js获取mac网卡地址

    一.关于getmac node.js没有直接获取mac网卡地址的模块,此时我们需要借助于第三方模块getmac.getmac 可以帮助我们 获取当前机器上的mac地址.gatmac 下载地址为:htt ...

  5. 【转】PNG图像文件格式

    5.2  PNG图像文件格式 PNG是可携式网络图像(portable network graphics)的英文缩写.PNG是从网络上开始发展的,目的是替代GIF和JPG格式,PNG图像文件格式也是当 ...

  6. nest(inner) class

    嵌套类,摘自: http://www.ntu.edu.sg/home/ehchua/programmin/java/J4a_GUI.html A nested class has these prop ...

  7. Spring 4 官方文档学习(七)核心技术之Spring AOP APIs

    请忽略本篇内容!!! 1.介绍 2.Spring中的pointcut API 2.1.概念 2.2.对pointcut的操作 2.3. AspectJ expression pointcut 2.4. ...

  8. C++ 语言中的重载、内联、缺省参数、隐式转换等机制展现了很多优点

    C++ 语言中的重载.内联.缺省参数.隐式转换等机制展现了很多优点,但是这些 优点的背后都隐藏着一些隐患.正如人们的饮食,少食和暴食都不可取,应当恰到好处. 我们要辨证地看待 C++的新机制,应该恰如 ...

  9. par函数的xaxt函数-控制x轴刻度的显示

    xaxt 参数控制x轴的刻度以及刻度对应的标签时候显示 默认值为‘s’, 表示显示,代码示例 par(xaxt = 's') plot(1:5, 1:5, main = "title&quo ...

  10. CentOS系统命令

    系统命令 yum命令 yum makecache yum 生成缓存 yum list installed mysql* 查看有没有安装过*包 rpm -qa | grep mysql* 查看有没有安装 ...