POJ 2337 Catenyms(有向图的欧拉通路)
题意:给n个字符串(3<=n<=1000),当字符串str[i]的尾字符与str[j]的首字符一样时,可用dot连接。判断用所有字符串一次且仅一次,连接成一串。若可以,输出答案的最小字典序(dot是最小字典序的,比‘a'小)。
显然就是以26个字母为结点,n个字符串为边,求解有向图的欧拉通路。
不过这里要注意,26个字母不一定都用上。
先判断有向图的欧拉通路的条件是否成立:
1.有一个结点入度等于出度+1且有一个结点出度等于入度+1且其他结点入度等于出度。(或所有结点入度等于出度)
2.有向图的基图连通。(把有向边改成无向边后,图连通)
感觉中间那段while(top)可以当做模板来用了,具体机理这里不详细说了,看着想一想还是能理解的。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <set>
#include <queue>
#include <map>
#include <stack>
using namespace std; #define MP make_pair
#define ll long long
#define inf 0x3f3f3f3f int in[30],out[30];
struct Edge{
int v,nxt;
bool vis;
}e[1010];
int head[30],esz;
void addedge(int u,int v){
e[esz].v=v,e[esz].nxt=head[u];
e[esz].vis=false;
head[u]=esz++;
}
int fa[30];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
bool jud(){
for(int i=0;i<26;++i) fa[i]=i;
int st;
for(int u=0;u<26;++u){
for(int j=head[u];j!=-1;j=e[j].nxt){
int v = e[j].v;
st = fa[find(u)] = find(v);
}
}
for(int i=0;i<26;++i){
if(out[i]+in[i] && find(i)!=find(st)) return false;
}
return true;
}
int main(){
int t,n;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
string s[1010];
for(int i=0;i<n;++i){
char tmp[22];
scanf("%s",tmp);
s[i] = tmp;
}
sort(s,s+n);
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
queue<string>val[30][30];
esz=0; memset(head,-1,sizeof(head));
for(int i=n-1;i>=0;--i){
int u = s[i][0]-'a', v = s[i][s[i].size()-1]-'a';
out[u]++; in[v]++;
addedge(u,v);
}
for(int i=0;i<n;++i){
int u = s[i][0]-'a', v = s[i][s[i].size()-1]-'a';
val[u][v].push(s[i]);
}
int j1=-1,j2=-1,j3=1;
for(int i=0;i<26;++i){
if(in[i]==out[i]) continue;
if(out[i]==in[i]+1){
if(j1==-1) j1=i;
else j3=0;
continue;
}
if(in[i]==out[i]+1){
if(j2==-1) j2=i;
else j3=0;
continue;
}
j3=0;
}
if((j1^j2)<0) j3=0;
if(j3==0 || jud()==false){
puts("***");
continue;
}
if(j1==-1){
for(int i=0;i<26;++i){
if(out[i]){
j1=i;
break;
}
}
}
stack<int>st;
vector<int>ans;
st.push(j1);
while(!st.empty()){
int u = st.top(); st.pop();
bool f = false;
for(int i=head[u];i!=-1;i=e[i].nxt){
int v = e[i].v;
if(e[i].vis) continue;
e[i].vis = true;
st.push(u);
st.push(v);
f=true;
break;
}
if(f==false) ans.push_back(u);
}
for(int i=ans.size()-1;i;--i){
int u = ans[i];
int v = ans[i-1];
printf("%s",val[u][v].front().c_str());
val[u][v].pop();
if(i!=1) printf(".");
else puts("");
}
}
return 0;
}
POJ 2337 Catenyms(有向图的欧拉通路)的更多相关文章
- hdu1116有向图判断欧拉通路判断
Play on Words Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
- Colored Sticks POJ - 2513 并查集+欧拉通路+字典树hash
题意:给出很多很多很多很多个棒子 左右各有颜色(给出的是单词) 相同颜色的可以接在一起,问是否存在一种 方法可以使得所以棒子连在一起 思路:就是一个判欧拉通路的题目,欧拉通路存在:没奇度顶点 或者 ...
- POJ - 2513 Colored Sticks(欧拉通路+并查集+字典树)
https://vjudge.net/problem/POJ-2513 题解转载自:優YoU http://user.qzone.qq.com/289065406/blog/1304742541 题 ...
- POJ 1386 Play on Words(有向欧拉通路 连通图)
题意 见下方中文翻译 每一个单词能够看成首尾两个字母相连的一条边 然后就是输入m条边 推断是否能构成有向欧拉通路了 有向图存在欧拉通路的充要条件: 1. 有向图的基图连通: 2. 全部点的出度和 ...
- Poj 2337 Catenyms(有向图DFS求欧拉通路)
题意: 给定n个单词, 问是否存在一条欧拉通路(如acm,matal,lack), 如果存在, 输出字典序最小的一条. 分析: 这题可以看作http://www.cnblogs.com/Jadon97 ...
- POJ 1300 欧拉通路&欧拉回路
系统的学习一遍图论!从这篇博客开始! 先介绍一些概念. 无向图: G为连通的无向图,称经过G的每条边一次并且仅一次的路径为欧拉通路. 如果欧拉通路是回路(起点和终点相同),则称此回路为欧拉回路. 具有 ...
- poj 2513 连接火柴 字典树+欧拉通路 好题
Colored Sticks Time Limit: 5000MS Memory Limit: 128000K Total Submissions: 27134 Accepted: 7186 ...
- POJ 2513 无向欧拉通路+字典树+并查集
题目大意: 有一堆头尾均有颜色的木条,要让它们拼接在一起,拼接处颜色要保证相同,问是否能够实现 这道题我一开始利用map<string,int>来对颜色进行赋值,好进行后面的并查操作以及欧 ...
- poj2513- Colored Sticks 字典树+欧拉通路判断
题目链接:http://poj.org/problem?id=2513 思路很容易想到就是判断欧拉通路 预处理时用字典树将每个单词和数字对应即可 刚开始在并查集处理的时候出错了 代码: #includ ...
随机推荐
- redis主从同步
本文是在window环境下的主从同步 1.redis是如何实现主从同步的 redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从) ...
- 线性回归 Linear Regression
成本函数(cost function)也叫损失函数(loss function),用来定义模型与观测值的误差.模型预测的价格与训练集数据的差异称为残差(residuals)或训练误差(test err ...
- SVM(支持向量机)的一点理解
最近有被问到SVM的问题,不懂装懂,羞愧不已.百度有很多深入浅出介绍SVM的文章,我就不赘述了,这里写一点自己肤浅的理解. SVM的核心思想是把求解低维空间上的高维分类器转化为求解高维函数空间上的线性 ...
- Leetcode 39. Combination Sum
Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique c ...
- 【Codeforces717G】Underfail Hash + 最大费用最大流
G. Underfail time limit per test:1 second memory limit per test:256 megabytes input:standard input o ...
- oneuijs/You-Dont-Need-jQuery
oneuijs/You-Dont-Need-jQuery https://github.com/oneuijs/You-Dont-Need-jQuery/blob/master/README.zh- ...
- WIN10 CMD 启动虚拟WIFI
1.以管理员身份运行命令提示符: 快捷键win+R→输入cmd→回车 2.启用并设定虚拟WiFi网卡: 运行命令:netsh wlan set hostednetwork mode=allow ssi ...
- A=AUB
#include<stdio.h>#include<stdlib.h> #define LIST_MAX 10#define LIST_ADD 2 typedef struct ...
- JQuery事件之鼠标事件
鼠标事件是在用户移动鼠标光标或者使用任意鼠标键点击时触发的. ():click事件:click事件于用户在元素敲击鼠标左键,并在相同元素上松开左键时触发. $('p').click(function( ...
- Java的发展历程
Java的发展历程充满了传奇色彩. 最初,Java是由Sun公司的一个研究小组开发出来的, 该小组起先的目标是想用软件实现对家用电器进行集成控制的小型控制装置. 开始,准备采用C++,但C++太复杂, ...