题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3270

设计一个状态表示两个人分别在两个点的状态,带个标号num[i][j];

据此得到状态之间转移的关系所构成的n元方程,高斯消元求解;

要注意起点的概率要+1,而且开始时两个人在两个点是有区分的,所以不能(A,B)和(B,A)都加;

用scanf会CE,所以改成了快读和cin;

调了一天的才找到错误竟然是把d数组和deg数组弄混了!

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int n,m,A,B,deg[],ct,head[],cnt;
double d[],a[][],p[];
struct N{
int to,next;
N(int t=,int n=):to(t),next(n) {}
}edge[];
int num(int a,int b){return n*(a-)+b;}
void gauss()
{
for(int x=;x<=cnt;x++)
{
int nw=x;
for(int y=x+;y<=cnt;y++)
if(fabs(a[y][x])>fabs(a[nw][x]))nw=y;
if(nw!=x)
for(int k=x;k<=cnt+;k++)swap(a[nw][k],a[x][k]);
for(int y=x+;y<=cnt;y++)
{
double r=a[y][x]/a[x][x];
for(int t=cnt+;t>=x;t--)//
a[y][t]-=r*a[x][t];
}
}
for(int i=cnt;i;i--)
{
for(int j=i+;j<=cnt;j++)
a[i][cnt+]-=a[i][j]*d[j];
d[i]=a[i][cnt+]/a[i][i];
}
}
int rd()
{
char ch=getchar();int x=,f=;
while(ch<''||ch>'')
{
if(ch=='-')f=-;
ch=getchar();
}
while(ch>=''&&ch<='')x=x*+ch-'',ch=getchar();
return x*f;
}
int main()
{
// scanf("%d%d%d%d",&n,&m,&A,&B);
n=rd();m=rd();A=rd();B=rd();
for(int i=,x,y;i<=m;i++)
{
// scanf("%d%d",&x,&y);
x=rd();y=rd();
deg[x]++,deg[y]++;
edge[++ct]=N(y,head[x]);head[x]=ct;
if(x==y)continue;
edge[++ct]=N(x,head[y]);head[y]=ct;
}
for(int i=;i<=n;i++)
// scanf("%lf",&p[i]);
cin>>p[i];
cnt=n*n;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++) if(i!=j)
{
int x=num(i,j);
for(int k=head[i];k;k=edge[k].next)
{
for(int l=head[j];l;l=edge[l].next)
{
a[num(edge[k].to,edge[l].to)][x]+=(1.0-p[i])*(1.0-p[j])/deg[i]/deg[j];
// a[num(i,edge[l].to)][x]+=(1.0-p[j])*p[i]/d[j];//重复
}
a[num(edge[k].to,j)][x]+=(1.0-p[i])*p[j]/deg[i];
}
for(int l=head[j];l;l=edge[l].next)a[num(i,edge[l].to)][x]+=(1.0-p[j])*p[i]/deg[j];
a[x][x]+=p[i]*p[j];
}
for(int i=;i<=cnt;i++)a[i][i]-=1.0;
a[num(A,B)][cnt+]-=1.0;
// printf("a[%d]=%.2lf\n",num(A,B),a[num(A,B)][cnt+1]);
// a[num(B,A)][cnt+1]-=1.0;//两人有区分!
gauss();
for(int i=;i<=n;i++)
printf("%.6lf ",d[num(i,i)]);
return ;
}

bzoj3270博物馆——期望概率DP的更多相关文章

  1. BZOJ3270: 博物馆【概率DP】【高斯消元】

    Description 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博物馆.这座博物馆有着特别的样式.它包含由m条走廊连接的n间房间,并且满足可以从任何一 ...

  2. BZOJ3270 博物館 概率DP 高斯消元

    BZOJ3270 博物館 概率DP 高斯消元 @(XSY)[概率DP, 高斯消元] Description 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博 ...

  3. HDU 3853 期望概率DP

    期望概率DP简单题 从[1,1]点走到[r,c]点,每走一步的代价为2 给出每一个点走相邻位置的概率,共3中方向,不动: [x,y]->[x][y]=p[x][y][0] ,  右移:[x][y ...

  4. 【BZOJ 3652】大新闻 数位dp+期望概率dp

    并不难,只是和期望概率dp结合了一下.稍作推断就可以发现加密与不加密是两个互相独立的问题,这个时候我们分开算就好了.对于加密,我们按位统计和就好了;对于不加密,我们先假设所有数都找到了他能找到的最好的 ...

  5. 【BZOJ 3811】玛里苟斯 大力观察+期望概率dp+线性基

    大力观察:I.从输出精准位数的约束来观察,一定会有猫腻,然后仔细想一想,就会发现输出的时候小数点后面不是.5就是没有 II.从最后答案小于2^63可以看出当k大于等于3的时候就可以直接搜索了 期望概率 ...

  6. 【NOIP模拟赛】黑红树 期望概率dp

    这是一道比较水的期望概率dp但是考场想歪了.......我们可以发现奇数一定是不能掉下来的,因为若奇数掉下来那么上一次偶数一定不会好好待着,那么我们考虑,一个点掉下来一定是有h/2-1个红(黑),h/ ...

  7. BZOJ1415: [Noi2005]聪聪和可可 最短路 期望概率dp

    首先这道题让我回忆了一下最短路算法,所以我在此做一个总结: 带权: Floyed:O(n3) SPFA:O(n+m),这是平均复杂度实际上为O(玄学) Dijkstra:O(n+2m),堆优化以后 因 ...

  8. 期望概率DP

    期望概率DP 1419: Red is good ​ Description ​ 桌面上有\(R\)张红牌和\(B\)张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付 ...

  9. UVa 11427 Expect the Expected (数学期望 + 概率DP)

    题意:某个人每天晚上都玩游戏,如果第一次就䊨了就高兴的去睡觉了,否则就继续直到赢的局数的比例严格大于 p,并且他每局获胜的概率也是 p,但是你最玩 n 局,但是如果比例一直超不过 p 的话,你将不高兴 ...

随机推荐

  1. codevs3249搭积木

    3249 搭积木  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description Petya有一个A×B×C的长方体积木,积 ...

  2. Java 读写文件大全

    原文:http://www.open-open.com/code/view/1423281836529 java中多种方式读文件 一.多种方式读文件内容. 1.按字节读取文件内容 2.按字符读取文件内 ...

  3. .NET CORE TOKEN 权限验证

    原文:.NET CORE TOKEN 权限验证 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u012601647/article/details/ ...

  4. android开发教程之使用线程实现视图平滑滚动示例

    最近一直想做下拉刷新的效果,琢磨了好久,才走到通过onTouch方法把整个视图往下拉的步骤,接下来就是能拉下来,松开手要能滑回去啊.网上看了好久,没有找到详细的下拉刷新的例子,只有自己慢慢琢磨了.昨天 ...

  5. HDU1800 Flying to the Mars 【贪心】

    Flying to the Mars Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  6. Python 一行命令ftp服务器

    Obligatory Twisted example: twistd -n ftp And probably useful: twistd ftp --help Usage: twistd [opti ...

  7. HBase技术简介

    一.HBase简介 HBase – Hadoop Database,是一个高可靠性.高性能.面向列.可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群. ...

  8. A&DCTF

    ADCTF  WRITEUP 方向:Reverse  解题数:2 题目:Reverse_01 解题过程: 用ida打开反汇编查看代码,看main函数发现 关键部分,字符串比较,竟然是直接比较”is_t ...

  9. 对JS闭包的理解

    闭包,是JS里很重要的一个概念,也是相对来讲不太容易理解的一个东西,不过即使难理解,我们也要迎难而上啊,嘿嘿,网上有很多文章都在讲闭包,我在看JS设计模式的时候,书里也着重讲了闭包,但是书里官方的的确 ...

  10. liberOJ #6173. Samjia 和矩阵 hash+后缀数组

    #6173. Samjia 和矩阵 题目链接  : 点这里 题目描述 给你一个只包含大写字母的矩阵,求有多少本质不同的子矩阵. 输入格式 第一行包含两个整数 nnn , mmm ,表示矩阵 nnn 行 ...