题目背景

BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题。

题目描述

N个偶像排成一列,他们来自M个不同的乐队。每个团队至少有一个偶像。

现在要求重新安排队列,使来自同一乐队的偶像连续的站在一起。重新安排的办法是,让若干偶像出列(剩下的偶像不动),然后让出列的偶像一个个归队到原来的空位,归队的位置任意。

请问最少让多少偶像出列?

输入输出格式

输入格式:

第一行2个整数N,M。

接下来N个行,每行一个整数 a_i(1\le a_i \le M)ai​(1≤ai​≤M) ,表示队列中第i个偶像的团队编号。

输出格式:

一个整数,表示答案

输入输出样例

输入样例#1:

12 4
1
3
2
4
2
1
2
3
1
1
3
4
输出样例#1:

7

说明

【样例解释】

1  3   √
3 3
2 3 √
4 4
2 4 √
1 2 √
2 2
3 2 √
1 1
1 1
3 1 √
4 1 √

【数据规模】

对于20%的数据, N\le 20, M=2N≤20,M=2

对于40%的数据, N\le 100, M\le 4N≤100,M≤4

对于70%的数据, N\le 2000, M\le 10N≤2000,M≤10

对于全部数据, 1\le N\le 10^5, M\le 201≤N≤105,M≤20

Solution

本蒟蒻做的第一道状压DP. 发现根本不会怎么搞...结果竟然不仅看了题解定义的状态,居然还看了转移方程(我也是水到了一定境界).

看来 DP 还是不够啊 ! !  进入正题:

首先关于题意,有几点需要注意:

1.每个人离开之后,会有一个空位,而且肯定会有另外一个人补上来.

2.最终状态不一定要求团队按正序排列.

状态定义:

f [ i ] 表示当前达到这种状态所需要请出去的最少的人.

         然后关于 i 转为 二进制后上的每一位,都表示当前这个团队已经站在了一起.

然后转移方程:

f[i]=min(f[i xor 2j]+num[j]−(sum[length][j]−sum[length−num[j]][j]));

j表示团队编号,sum表示某种团队的前缀和.length表示到此已经排到的长度.

然后代码里面有解释.

#include<bits/stdc++.h>
using namespace std;
int n,m;
int c[],f[];
int sum[][];
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%d",&c[i]);
c[i]--;
//减掉一维可以省空间
for(int j=;j<m;j++)
{
sum[i][j]=sum[i-][j];
if(j==c[i])
sum[i][j]++;
}
}
for(int i=;i<(<<m);i++)
f[i]=;
//赋值为极大值
f[]=;
for(int i=;i<(<<m);i++)
{
int now=;
//now表示当前这个状态哪一些单位无需处理.
for(int j=;j<m;j++)
if((<<j)&i) now+=sum[n][j];
for(int j=;j<m;j++)
{
if((<<j)&i) continue;
int num=sum[n][j];
int r=now+num;
int l=now;
f[i|(<<j)]=min(f[i|(<<j)],f[i]+(r-l-(sum[r][j]-sum[l][j])));
/*此时的决策:
即新加一个团队. 更新状态:
需要先计算当前这种情况所达到的点.
即满足当前这种情况的话,我们已经到了何处.
然后的话,我们此时需要将后面的这个团队的人补上来.
所以需要花费的代价即是
当前这个团队所有的人
减去当前这个点所有的这个团队的人 */
}
}
printf("%d\n",f[(<<m)-]);
return ;
}

           

P3694 邦邦的大合唱站队 (状压DP)的更多相关文章

  1. 洛谷 P3694 邦邦的大合唱站队 状压DP

    题目描述 输入输出样例 输入 #1 复制 12 4 1 3 2 4 2 1 2 3 1 1 3 4 输出 #1 复制 7 说明/提示 分析 首先要注意合唱队排好队之后不一定是按\(1.2.3..... ...

  2. P3694 邦邦的大合唱站队/签到题(状压dp)

    P3694 邦邦的大合唱站队/签到题 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  3. 洛谷P3694 邦邦的大合唱站队【状压dp】

    状压dp 应用思想,找准状态,多考虑状态和\(f\)答案数组的维数(这个题主要就是找出来状态如何转移) 题目背景 \(BanG Dream!\)里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. ...

  4. Luogu P3694 邦邦的大合唱站队 【状压dp】By cellur925

    题目传送门 最开始学状压的时候...学长就讲的是这个题.当时对于刚好像明白互不侵犯和炮兵阵地的我来说好像在听天书.......因为我当时心里想,这又不是什么棋盘,咋状压啊?!后来发现这样的状压多了去了 ...

  5. [luoguP3694] 邦邦的大合唱站队/签到题(状压DP)

    传送门 来自kkk的题解: 70分做法:枚举每个学校顺序,暴力. 100分:状压dp.从队列头到尾DP, 状态:f[i]表示i状态下最小的出列(不一致)的个数. 比如f[1101]表示从头到位为1/3 ...

  6. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  7. nefu1109 游戏争霸赛(状压dp)

    题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...

  8. poj3311 TSP经典状压dp(Traveling Saleman Problem)

    题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...

  9. [NOIP2016]愤怒的小鸟 D2 T3 状压DP

    [NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...

随机推荐

  1. ajax传给springMVC数据编码集问题

    前台 ajax: $.ajax("${pageContext.request.contextPath}/hello",// 发送请求的URL字符串. { dataType : &q ...

  2. UVA 10572 Black & White (状压DP)

    题意:有一个n*m的矩阵,其中部分格子已经涂黑,部分涂白,要求为其他格子也上黑/白色,问有多少种涂法可以满足一下要求: (1)任意2*2的子矩阵不可以同色. (2)所有格子必须上色. (3)只能有两个 ...

  3. C#入门(3)

    C#入门(3) Delegates, Events, Lambda Expressions 最早的windows是使用c风格的函数指针来进行callback的,但是这样仅仅传递了一个内存中的地址,无法 ...

  4. UVALive 4080 Warfare And Logistics (最短路树)

    很多的边会被删掉,需要排除一些干扰进行优化. 和UVA - 1279 Asteroid Rangers类似,本题最关键的地方在于,对于一个单源的最短路径来说,如果最短路树上的边没有改变的话,那么最短路 ...

  5. Html5怎么导出图片

    其实很简单, 首先需要两个js文件 jquery.min.js html2canvas.js 直接上代码,几行就解决了 <a id="example1" onclick=&q ...

  6. go语音实战读后感——一

    1.第一个go程序: package main import ( "fmt" ) func main() { fmt.Println("Hello go") } ...

  7. linux环境nginx的安装与使用

    因为公司需要需要安装一系列环境,新手上路第一次配的时候什么也不懂在网上找了半天,觉得这篇不错,我在这里顺便记录一下.(原文:https://www.cnblogs.com/wyd168/p/66365 ...

  8. 获得Java中System对应一些属性值

    public static void main(String[] args){ System.out.println("Java运行时环境版本:\n"+System.getProp ...

  9. 初涉「带权并查集」&&bzoj3376: [Usaco2004 Open]Cube Stacking 方块游戏

    算是挺基础的东西 Description     约翰和贝茜在玩一个方块游戏.编号为1到n的n(1≤n≤30000)个方块正放在地上.每个构成一个立方柱.    游戏开始后,约翰会给贝茜发出P(1≤P ...

  10. centos7内核优化

    #sysctl -p 参数: net.ipv6.conf.all.disable_ipv6 = 1net.ipv6.conf.default.disable_ipv6 = 1net.ipv4.icmp ...