Description

Transmission Gate

Solution

这一题可以考虑Dp,设\(Dp[i][j]\) 为在第i段中,以j颜色为结尾的最后一小段长度的最小值。

那么可以先考虑以表为结尾的情况:

  1. 表上一个线段的结尾,就把表看作分隔符,那么分隔符的数量下界是$lowerBound = \lceil \frac{(Dp[i - 1][j] + a[i])}{k} \rceil - 1 \(, 如果`b[i] > cnt`, 那么\)dp[i][j] = 1\(,上界\)upperBound$是a[i] * k

  2. 表是上一个线段的结尾, 分隔符数量下界是\(lowerBound = \lceil \frac{a[i]}{k} \rceil - 1\), 上界 $upperBound $ 是 \(a[i] * k + (k - Dp[i - 1][j ~ xor ~ 1])\)

    最后判断\(dp[n][0] \leq k || dp[n][1] \leq k\)

Summary

​ 刚开始设状态\(dp[i][j][l]\) 表示dp到ith段,段的最后颜色为j,这样的颜色在这一段的最后一部分有l长是否有解。 其实这样是不对的,算方案数判断是否可行的套路只适用于一些容斥数学题(eg. Mobius), 所以就多上一维的冗余信息。

​ 问题的模型是: 我们有n个段,段之间首尾相连,要求段中间的连续的隔板与球不超过k个。求是否有解。这样,我们不关心内部的排列方式, 并且内部排列不同不会影响下一段。这样的话我们可以直接考虑外部限制的情况下,钦定一种内部可行的方式。 而钦定就是对简单贪心的考察。

​ 因为上一段的影响对下一段越小,对解的限制也就越小(越容易出解),所以可以直接贪心。

​ 先考虑公式,将无关的公式看做挡板,表看作球。然后直接尽量容纳表即可。

Code

#include<bits/stdc++.h>
using std :: min;
#define rep(i, a, b) for(int i = (a), i##_end_ = (b); i <= i##_end_; ++i)
#define drep(i, a, b) for(int i = (a), i##_end_ = (b); i >= i##_end_; --i)
#define clar(a, b) memset((a), (b), sizeof(a))
#define debug(...) fprintf(stderr, __VA_ARGS__)
typedef long long LL;
typedef long double LD;
int read() {
char ch = getchar();
int x = 0, flag = 1;
for (;!isdigit(ch); ch = getchar()) if (ch == '-') flag *= -1;
for (;isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
return x * flag;
}
void write(int x) {
if (x < 0) putchar('-'), x = -x;
if (x >= 10) write(x / 10);
putchar(x % 10 + 48);
} const int Maxn = 3e5 + 9;
static int dp[Maxn][2], n;
static int x[Maxn], y[Maxn], k; void init() {
n = read(), k = read();
rep (i, 1, n) x[i] = read();
rep (i, 1, n) y[i] = read();
} int getCalc(int preVal, int preSeparator, int nowVal, int nowSeparator) {
int res = 0x3f3f3f3f;
if (preVal < 0x3f3f3f3f) {
LL lowerBound = ceil((1ll * preVal + nowVal) * 1. / k) - 1;
if (nowSeparator < lowerBound) res = min(res, 0x3f3f3f3f);
else if (nowSeparator > 1ll * nowVal * k) res = min(res, 0x3f3f3f3f);
else if (nowSeparator > lowerBound) res = min(res, 1);
else res = min(1ll * res, (1ll * preVal + nowVal) % k ? (1ll * preVal + nowVal) % k : k);
} if (preSeparator < 0x3f3f3f3f) {
LL lowerBound = ceil(nowVal * 1. / k) - 1;
if (nowSeparator < lowerBound) res = min(res, 0x3f3f3f3f);
else if (nowSeparator > 1ll * (nowVal - 1) * k + (k - preSeparator)) res = min(res, 0x3f3f3f3f);
else if (nowSeparator > lowerBound) res = min(res, 1);
else res = min(1ll * res, (1ll * nowVal) % k ? (1ll * nowVal) % k : k);
}
return res;
} void solve() {
dp[0][0] = 0; dp[0][1] = 0; rep (i, 1, n) {
dp[i][0] = getCalc(dp[i - 1][0], dp[i - 1][1], x[i], y[i]);
dp[i][1] = getCalc(dp[i - 1][1], dp[i - 1][0], y[i], x[i]);
} puts(dp[n][0] <= k || dp[n][1] <= k ? "YES" : "NO");
} int main() { init();
solve(); #ifdef Qrsikno
debug("\nRunning time: %.3lf(s)\n", clock() * 1.0 / CLOCKS_PER_SEC);
#endif
return 0;
}

[CF1076F] Summer Practice Report的更多相关文章

  1. Codeforces 1076F Summer Practice Report dp

    Summer Practice Report dp[ i ][ 0 ]表示放完前 i 页, 第 i 页最后一段是 0, 0个数的最小值. dp[ i ][ 1 ]表示放完前 i 页, 第 i 页最后一 ...

  2. Codeforces1076F. Summer Practice Report(贪心+动态规划)

    题目链接:传送门 题目: F. Summer Practice Report time limit per test seconds memory limit per test megabytes i ...

  3. Educational Codeforces Round 54 (Rated for Div. 2) Solution

    A - Minimizing the String solved 题意:给出一个字符串,可以移掉最多一个字符,在所有可能性中选取一个字典序最小的. 思路:显然,一定可以移掉一个字符,如果移掉的字符的后 ...

  4. Codeforces Educational Codeforces Round 54 题解

    题目链接:https://codeforc.es/contest/1076 A. Minimizing the String 题意:给出一个字符串,最多删掉一个字母,输出操作后字典序最小的字符串. 题 ...

  5. BA Practice Lead Handbook 1 - Why Is Business Analysis Taking The World By Storm?

    The articles in this series are focused on individual Business Analysts and their managers. https:// ...

  6. Pramp mock interview (4th practice): Matrix Spiral Print

    March 16, 2016 Problem statement:Given a 2D array (matrix) named M, print all items of M in a spiral ...

  7. Atitit 数据存储视图的最佳实际best practice attilax总结

    Atitit 数据存储视图的最佳实际best practice attilax总结 1.1. 视图优点:可读性的提升1 1.2. 结论  本着可读性优先于性能的原则,面向人类编程优先于面向机器编程,应 ...

  8. 2.ASP.NET MVC 中使用Crystal Report水晶报表

    上一篇,介绍了怎么导出Excel文件,这篇文章介绍在ASP.NET MVC中使用水晶报表. 项目源码下载:https://github.com/caofangsheng93/CrystalReport ...

  9. Monthly Income Report – August 2016

    原文链接:https://marcoschwartz.com/monthly-income-report-august-2016/ Every month, I publish a report of ...

随机推荐

  1. spring mvc 集成freemarker模板

    主要使用到的jar 文件:spring mvc +freemarker.jar 第一步:spring mvc 集成 freemarker <!-- 定义跳转的文件的前后缀 ,视图模式配置--&g ...

  2. M公司入职记

    非常遗憾,我又跳槽了,到传说中的M公司,第一天就体会到了,神马叫差距. 要求9点30到,提前10分钟到了前台.前台MM懵懂的跟我说入职找人事,好吧. 电话联系相关人等,等到10点左右,被引导到一位不知 ...

  3. 使用VLC搭建视频直播服务器

    去年我们信息之夜我们进行过视频直播服务,当时我们使用了WMS(Windows Media Server)实现了这个服务,但是编码是微软的WMV,因而像iPhone/Android这样的智能手机无法观看 ...

  4. Spark调研笔记第3篇 - Spark集群相应用的调度策略简单介绍

    Spark集群的调度分应用间调度和应用内调度两种情况,下文分别进行说明. 1. 应用间调度 1) 调度策略1: 资源静态分区 资源静态分区是指整个集群的资源被预先划分为多个partitions,资源分 ...

  5. Spring中注解

    @Autowired :spring注解 @Resource :J2EE注解 @Transactional(rollbackFor=Exception.class):指定回滚 @RequestMapp ...

  6. [Tue, 11 Aug 2015 ~ Mon, 17 Aug 2015] Deep Learning in arxiv

    Image Representations and New Domains inNeural Image Captioning we find that a state-of-theart neura ...

  7. Android多线程更新UI的方式

    Android下,对于耗时的操作要放到子线程中,要不然会残生ANR,本次我们就来学习一下Android多线程更新UI的方式. 首先我们来认识一下anr: anr:application not rep ...

  8. SQLServer导出单表数据

    采用生成脚本---仅数据..   如果是部分数据,可以先把部分数据备份到一个表中 select * into .. from ...

  9. ie6不支持png图片的解决办法

    在head里引入png.js文件 <!--[if lte IE 6]> <script type="text/javascript" src="js/P ...

  10. linux 监控进程所消耗的资源(内存),达到阈值(绝对值、相对值)后,将其杀死

    监控某个python进程是否存在,如不存在则启动 #!/bin/bashwhile [ 1 ]do #打印出当前的jboss进程:grep jboss查询的jboss进程,grep -v " ...