题解 CF786B 【Legacy】
本题要求我们支持三种操作:
① 点向点连边。 ② 点向区间连边。 ③ 区间向点连边。
然后跑最短路得出答案。
考虑使用线段树优化建图。
建两颗线段树,入树和出树,每个节点为一段区间的原节点集合。入树内部为儿子向父亲连有向边,出树内部为父亲连有向边,因为入树和出树的叶子节点都为原图中的点,所以两棵树的对应叶子节点连无向边,这些边边权都为\(0\)。
示意图如下,左边为入树,右边为出树。
操作一时,从入树叶子节点向出树叶子节点连边(红色的线)。
操作二时,从入树叶子节点向出树所对应的区间节点连边(蓝色的线)。
操作三时,从入树所对应的区间节点向出树叶子节点连边(绿色的线)。
具体实现细节看代码吧。
记得开\(long\ long\)和开大数组。
\(code:\)
#include<bits/stdc++.h>
#define maxn 800010
#define inf 2000000000
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,m,s,flag;
struct edge
{
int to,nxt,v;
}e[maxn];
int head[maxn],edge_cnt;
void add(int from,int to,int val)
{
e[++edge_cnt]=(edge){to,head[from],val};
head[from]=edge_cnt;
}
int in_root,out_root,tree_cnt;
int ls[maxn],rs[maxn],in_num[maxn],out_num[maxn];
void build_in(int L,int R,int &cur)
{
cur=++tree_cnt;
if(L==R)
{
in_num[L]=cur;
return;
}
int mid=(L+R)>>1;
build_in(L,mid,ls[cur]);
build_in(mid+1,R,rs[cur]);
add(ls[cur],cur,0),add(rs[cur],cur,0);
}
void build_out(int L,int R,int &cur)
{
cur=++tree_cnt;
if(L==R)
{
out_num[L]=cur;
return;
}
int mid=(L+R)>>1;
build_out(L,mid,ls[cur]);
build_out(mid+1,R,rs[cur]);
add(cur,ls[cur],0),add(cur,rs[cur],0);
}
void modify_in(int L,int R,int l,int r,int pos,int val,int &cur)
{
if(L<=l&&R>=r)
{
add(cur,pos,val);
return;
}
int mid=(l+r)>>1;
if(L<=mid) modify_in(L,R,l,mid,pos,val,ls[cur]);
if(R>mid) modify_in(L,R,mid+1,r,pos,val,rs[cur]);
}
void modify_out(int L,int R,int l,int r,int pos,int val,int &cur)
{
if(L<=l&&R>=r)
{
add(pos,cur,val);
return;
}
int mid=(l+r)>>1;
if(L<=mid) modify_out(L,R,l,mid,pos,val,ls[cur]);
if(R>mid) modify_out(L,R,mid+1,r,pos,val,rs[cur]);
}
ll dis[maxn];
bool vis[maxn];
struct node
{
ll val;
int num;
};
bool operator <(const node &x,const node &y)
{
return x.val>y.val;
}
priority_queue<node> q;
void dijkstra()
{
s=in_num[s];
for(int i=1;i<=tree_cnt;++i) dis[i]=inf;
dis[s]=0;
q.push((node){0,s});
while(!q.empty())
{
node tmp=q.top();
q.pop();
int x=tmp.num;
if(vis[x]) continue;
vis[x]=true;
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to,v=e[i].v;
if(dis[y]>dis[x]+v)
{
dis[y]=dis[x]+v;
q.push((node){dis[y],y});
}
}
}
}
int main()
{
read(n),read(m),read(s);
build_in(1,n,in_root);
build_out(1,n,out_root);
for(int i=1;i<=n;++i)
add(in_num[i],out_num[i],0),add(out_num[i],in_num[i],0);
while(m--)
{
read(flag);
int x,y,l,r,v;
if(flag==1)
{
read(x),read(y),read(v);
add(in_num[x],out_num[y],v);
}
if(flag==2)
{
read(x),read(l),read(r),read(v);
modify_out(l,r,1,n,in_num[x],v,out_root);
}
if(flag==3)
{
read(x),read(l),read(r),read(v);
modify_in(l,r,1,n,out_num[x],v,in_root);
}
}
dijkstra();
for(int i=1;i<=n;++i)
{
if(dis[out_num[i]]==inf) printf("-1 ");
else printf("%lld ",dis[out_num[i]]);
}
return 0;
}
题解 CF786B 【Legacy】的更多相关文章
- [题解] CF786B Legacy
前言 题目链接 题意 有 \(n\) 个点,\(q\) 次连边,以及起点 \(s\) .连边具体分三种: \(1\) \(v\) \(u\) \(w\) 从 \(v\) 到 \(u\) 连一条边. \ ...
- CF786B Legacy(线段树优化建边)
模板题CF786B Legacy 先说算法 如果需要有n个点需要建图 给m个需要建边的信息,从单点(或区间内所有点)向一区间所有点连边 如果暴力建图复杂度\(mn^2\) 以单点连向区间为例,在n个点 ...
- CF786B Legacy && 线段树优化连边
线段树优化连边 要求点 \(x\) 向区间 \([L, R]\) 连边, 一次的复杂度上限为 \(O(n)\) 然后弄成线段树的结构 先父子连边边权为 \(0\) 这样连边就只需要连父亲就可以等效于连 ...
- CF786B Legacy 线段树优化建图
问题描述 CF786B LG-CF786B 题解 线段树优化建图 线段树的一个区间结点代表 \([l,r]\) 区间点. 然后建立区间点的时候就在线段树上建边,有效减少点的个数,从而提高时空效率. 优 ...
- 线段树优化建图 || CF786B Legacy
题面:786B - Legacy 代码: #include<cstdio> #include<cstring> #include<iostream> #includ ...
- CF786B Legacy 线段树优化建图 + spfa
CodeForces 786B Rick和他的同事们做出了一种新的带放射性的婴儿食品(???根据图片和原文的确如此...),与此同时很多坏人正追赶着他们.因此Rick想在坏人们捉到他之前把他的遗产留给 ...
- CF786B Legacy(线段树优化建图)
嘟嘟嘟 省选Day1T2不仅考了字符串,还考了线段树优化建图.当时不会,现在赶快学一下. 线段树能优化的图就是像这道题一样,一个点像一个区间的点连边,或一个区间像一个点连边.一个个连就是\(O(n ^ ...
- CF786B Legacy
思路 线段树优化建图 基本思想就是要把一个区间连边拆成log个节点连边, 然后一颗入线段树,一颗出线段树,出线段树都由子节点向父节点连边(可以从子区间出发),入线段树从父节点向子节点连边(可以到达子区 ...
- 【CF786B】Legacy
题目大意:初始给定 N 个点,支持三种操作:两点之间连边:一个点与一个连续区间编号的点之间连边:一个连续区间内的点和一个点连边,求执行 N 次操作之后的单源最短路. 题解:学会了线段树优化建图. 发现 ...
随机推荐
- JDBC知识点总结
一:JDBC 概述 一.简介 1. JDBC(Java DataBase Connection,Java 数据库连接)是Java语言中用来规范客户端程序如何来访问数据库的应用程序 ...
- django 报错处理汇总
运行 manage.py task时 ,makemigrations抛出以下错误, django.db.utils.OperationalError: (1045, "Access deni ...
- Jmeter系列(31)- 获取并使用 JDBC Request 返回的数据
如果你想从头学习Jmeter,可以看看这个系列的文章哦 https://www.cnblogs.com/poloyy/category/1746599.html 前言 Jmeter 使用 JDBC R ...
- Python 简明教程 --- 11,Python 元组
微信公众号:码农充电站pro 个人主页:https://codeshellme.github.io 软件工程的目标是控制复杂度,而不是增加复杂性. -- Dr. Pamela Zave 目录 我们在上 ...
- oracle创建序列,并插入记录
Oracle序列创建和使用创建序列 语法 CREATE SEQUENCE 序列名 [相关参数] 参数说明 INCREMENT BY : 序列变化的步进,负值表示递减.(默认1) START WITH ...
- 怎样用 I/O流读取txt文件?
java.io包提供了用来永久保存对象状态的机制,可处理各种类型的流,如文件流.字节流.字符流等,还提供实现可串行化Serializable接口.可处理对象流. Java语言提供3种自动生成的标准流. ...
- plsql启动报 Using filter for all users can lead to poor perform
首先,这个与Oracle配置无关,就是在使用pl/sql左侧树形目录时会看到非常多的和你当前工作无关的表,视图,序列等,导致打开速度慢. 解决办法:Tools-->Object browser ...
- [CF1216E] Numerical Sequence hard version
题目 The only difference between the easy and the hard versions is the maximum value of k. You are giv ...
- 【弹性碰撞问题】POJ 1852 Ants
Description An army of ants walk on a horizontal pole of length l cm, each with a constant speed of ...
- 洛谷 P2648 赚钱
这道题其实就是求最长路顺便再判断一下正环而已. 这种题肯定要用SPFA的啦,有又正边权(因为最长路所以正边就相当于负边),又是正环(同理,相当于负环),SPFA专治这种问题. 当一个点入队多次的时候, ...