题目

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例:

输入:
[
  [1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。

解释

此题运用的是动态规划, 而且和很多题目非常相似,题目要求每次只能向下走一步或者向右走一步。这就规定走到这一个点的路径只有两点,就是上面的点和左边的点。所以每一点的最小cost可以表示为

min(到达上面的点的最小cost, 到达左边的点的最小cost) + 当前点的 cost

这样就把问题分成子问题,创建一个二维数组cost用来保存到达每一点的最小cost。

递归式可以表示为

  cost[i][j] = min(cost[i][j - 1] + grid[i][j], cost[i - 1][j] + grid[i][j]);

然后利用一个二层循环,把到达每一个点的最小值求出来。返回返回右下角的值即可。

代码

    int minPathSum(vector<vector<int>>& grid) {
vector<vector<int>> cost = grid;
int n = grid.size(), m = grid[0].size();
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
//处理第一行和第一列的情况,如果不处理的话,数组会越界
if (i == 0) {
//一直向右走
cost[i][j] = cost[i][j - 1] + grid[i][j];
} else if (j == 0) {
//一直向下走
cost[i][j] = cost[i - 1][j] + grid[i][j];
} else {
//利用递推式求结果
cost[i][j] = min(cost[i][j - 1] + grid[i][j], cost[i - 1][j] + grid[i][j]);
}
}
}
//返回右下角值
return cost[n-1][m-1];
}

总结

  • 关键的一点就是找出递推式。看当前最优解能否被前面的值推出
  • 存储原来的数据一般可以用一个二维数组。但是有一些题目对空间有限制。比如LeetCode 413, 这样的话就要尽量去优化,看能不能用一维数组来代替。

类似题目

LeetCode 877

https://blog.csdn.net/qq874455953/article/details/82696196

LeetCode 64最小路径和的更多相关文章

  1. leetcode 64. 最小路径和 动态规划系列

    目录 1. leetcode 64. 最小路径和 1.1. 暴力 1.2. 二维动态规划 2. 完整代码及执行结果 2.1. 执行结果 1. leetcode 64. 最小路径和 给定一个包含非负整数 ...

  2. LeetCode 64. 最小路径和(Minimum Path Sum) 20

    64. 最小路径和 64. Minimum Path Sum 题目描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明: 每次只能向下或 ...

  3. Java实现 LeetCode 64 最小路径和

    64. 最小路径和 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], ...

  4. [LeetCode] 64. 最小路径和 ☆☆☆(动态规划)

    描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入:[  [1,3,1], [1,5,1 ...

  5. [LeetCode]64. 最小路径和(DP)

    题目 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4 ...

  6. Leetcode——64. 最小路径和

    题目描述:题目链接 同样对于这个问题,我们可以考虑用动态规划来解决. 解决动态规划常见的三个步骤: 1:问题的归纳.对于 i,j 位置上的最短路径可以用d[ i ][ j ]表示. 2:归纳递推式:d ...

  7. leetcode 64. 最小路径和Minimum Path Sum

    很典型的动态规划题目 C++解法一:空间复杂度n2 class Solution { public: int minPathSum(vector<vector<int>>&am ...

  8. Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)

    Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...

  9. Leetcode题目64.最小路径和(动态规划-中等)

    题目描述: 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], [1, ...

随机推荐

  1. 集训作业 洛谷P1032 字串变换

    集训的题目有点多,先写困难的绿题吧(简单的应该想想就会了) 嗯,这个题看起来像个搜索呢(就是个搜索) 我们仔细想想就知道这个题肯定不能用深搜,可以优化的地方太少了,TLE是必然的. 那我们该怎么办呢? ...

  2. es6 Proxy简单使用

    es6的Proxy是什么? 可以理解为,是在访问对象前的一层拦截.只要访问的该对象,就要通过这个一层拦截.这一层的拦截,可以进行数据的过滤和更改 比如下面这个 var p = new Proxy({} ...

  3. 关于ajaxSubmit传递参数 后台接收为"参数,参数”的问题

    问题: 用户名密码往后台提交的时候,发现接收到的参数变成了下图 解决办法: 去掉ajaxSubmit的data属性 如下图 解释:因为ajaxSubmit在封装的时候会自动的从被form包裹的表单控件 ...

  4. 修改map中原来的各种Key

    简单描述: 做数据迁移的时候,需要展示数据库的字段信息,但是我发现 Oracle的sql查询到的结果 出来默认是大写的 和 前端vue的参数小写开头+驼峰 不太一样 所以后台取到的数据都是是引用Lis ...

  5. CS231n 斯坦福李飞飞视觉识别课程

    本文是个人在学习<CS231n 斯坦福李飞飞视觉识别课程>的学习笔记. 第一讲:课程简介 课时1 计算机视觉概述 课时2 计算机视觉历史背景 课时3 课程后勤 选读书籍<DeepLe ...

  6. C语言学习笔记一---C语言概述

    一.编程语言与解释语言 1.程序的执行 a.解释:借助一个能试图理解程序的程序,使计算机按要求执行你自己写的程序 b.编译:将所写程序翻译为机器语言写的程序,使计算机按要求执行你自己写的程序 2.两者 ...

  7. Pycharm远程解释器SFTP开发和调试

    转载:https://blog.csdn.net/ll641058431/article/details/53049453 使用PyCharm进行远程开发和调试 你是否经常要在Windows 7或MA ...

  8. Mysql Backup

    1.完全备份# innobackupex --user=DBUSER --password=DBUSERPASS /path/to/BACKUP-DIR/如果要使用一个最小权限的用户进行备份,则可基于 ...

  9. CSS样式基础2

    CSS: 一.常用样式:字体,颜色,背景 二.布局:浮动  定位  标签特性 三.标签盒子模型: 边距  边框 四.动画:旋转 渐变 注意:子标签会继承父标签的样式但不是所有的样式都会被继承. 1.1 ...

  10. 第四章 常用API(下)

    4.1.String类 描述:该类代表字符串 构造方法: 方法 描述 public String() 初始化构造一个空白字符串 public String(char[] value) 通过字符数组初始 ...