LeetCode 64最小路径和
题目
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
解释
此题运用的是动态规划, 而且和很多题目非常相似,题目要求每次只能向下走一步或者向右走一步。这就规定走到这一个点的路径只有两点,就是上面的点和左边的点。所以每一点的最小cost可以表示为
min(到达上面的点的最小cost, 到达左边的点的最小cost) + 当前点的 cost
这样就把问题分成子问题,创建一个二维数组cost用来保存到达每一点的最小cost。
递归式可以表示为
cost[i][j] = min(cost[i][j - 1] + grid[i][j], cost[i - 1][j] + grid[i][j]);
然后利用一个二层循环,把到达每一个点的最小值求出来。返回返回右下角的值即可。
代码
int minPathSum(vector<vector<int>>& grid) {
vector<vector<int>> cost = grid;
int n = grid.size(), m = grid[0].size();
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
//处理第一行和第一列的情况,如果不处理的话,数组会越界
if (i == 0) {
//一直向右走
cost[i][j] = cost[i][j - 1] + grid[i][j];
} else if (j == 0) {
//一直向下走
cost[i][j] = cost[i - 1][j] + grid[i][j];
} else {
//利用递推式求结果
cost[i][j] = min(cost[i][j - 1] + grid[i][j], cost[i - 1][j] + grid[i][j]);
}
}
}
//返回右下角值
return cost[n-1][m-1];
}
总结
- 关键的一点就是找出递推式。看当前最优解能否被前面的值推出
- 存储原来的数据一般可以用一个二维数组。但是有一些题目对空间有限制。比如LeetCode 413, 这样的话就要尽量去优化,看能不能用一维数组来代替。
类似题目
LeetCode 877
https://blog.csdn.net/qq874455953/article/details/82696196
LeetCode 64最小路径和的更多相关文章
- leetcode 64. 最小路径和 动态规划系列
目录 1. leetcode 64. 最小路径和 1.1. 暴力 1.2. 二维动态规划 2. 完整代码及执行结果 2.1. 执行结果 1. leetcode 64. 最小路径和 给定一个包含非负整数 ...
- LeetCode 64. 最小路径和(Minimum Path Sum) 20
64. 最小路径和 64. Minimum Path Sum 题目描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明: 每次只能向下或 ...
- Java实现 LeetCode 64 最小路径和
64. 最小路径和 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], ...
- [LeetCode] 64. 最小路径和 ☆☆☆(动态规划)
描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入:[ [1,3,1], [1,5,1 ...
- [LeetCode]64. 最小路径和(DP)
题目 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4 ...
- Leetcode——64. 最小路径和
题目描述:题目链接 同样对于这个问题,我们可以考虑用动态规划来解决. 解决动态规划常见的三个步骤: 1:问题的归纳.对于 i,j 位置上的最短路径可以用d[ i ][ j ]表示. 2:归纳递推式:d ...
- leetcode 64. 最小路径和Minimum Path Sum
很典型的动态规划题目 C++解法一:空间复杂度n2 class Solution { public: int minPathSum(vector<vector<int>>&am ...
- Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)
Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...
- Leetcode题目64.最小路径和(动态规划-中等)
题目描述: 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], [1, ...
随机推荐
- ref和动态组件
ref--------指引 另一种获取表单值的方法 是Vue环境中一个内置的属性.它可以使用this.$refs可以快速拿到DOM对象.
- 试一试 GraphQL
GraphQL 简介 一种用于 API 的查询语言. GraphQL 既是一种用于 API 的查询语言也是一个满足你数据查询的运行时. GraphQL 对你的 API 中的数据提供了一套易于理解的完整 ...
- 《Head First 设计模式》:工厂方法模式
正文 一.定义 工厂方法模式定义了一个创建对象的接口,但由子类决定要实例化的类是哪一个.工厂方法让类把实例化推迟到子类. PS:在设计模式中,"实现一个接口"泛指实现某个超类型(可 ...
- 性能1.84倍于Ceph!网易数帆Curve分布式存储开源
在上周刚结束的网易数字+大会上 网易数帆宣布: 开源一款名为Curve的高性能分布式存储系统, 性能可达Ceph的1.84倍! 网易副总裁.网易杭州研究院执行院长兼网易数帆总经理汪源: 基础软件的能力 ...
- Unable to find a constructor that takes a String param or a valueOf() or fromString() method
Unable to find a constructor that takes a String param or a valueOf() or fromString() method 最近在做服务的 ...
- 如何使用Istio 1.6管理多集群中的微服务?
假如你正在一家典型的企业里工作,需要与多个团队一起工作,并为客户提供一个独立的软件,组成一个应用程序.你的团队遵循微服务架构,并拥有由多个Kubernetes集群组成的广泛基础设施. 由于微服务分布在 ...
- 2016A06寒假作业 全排列
又是一个全排列哈, 注意注意,这个题不是十三个数字都需要,但原理是一样的 一开始把for的边界写错了(每次其实应该从k开始,还没看出来orz) #include <iostream> #i ...
- IPython magic命令
- 点format方式输出星号字典的值是键
dic = {'a':123,'b':456} print("{0}:{1}".format(*dic)) a:b 2020-05-08
- 美团Leaf——全局序列生成器
Leaf的Github地址: https://github.com/Meituan-Dianping/Leaf Leaf美团技术团队博客地址: https://tech.meituan.com/201 ...