题目

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例:

输入:
[
  [1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。

解释

此题运用的是动态规划, 而且和很多题目非常相似,题目要求每次只能向下走一步或者向右走一步。这就规定走到这一个点的路径只有两点,就是上面的点和左边的点。所以每一点的最小cost可以表示为

min(到达上面的点的最小cost, 到达左边的点的最小cost) + 当前点的 cost

这样就把问题分成子问题,创建一个二维数组cost用来保存到达每一点的最小cost。

递归式可以表示为

  cost[i][j] = min(cost[i][j - 1] + grid[i][j], cost[i - 1][j] + grid[i][j]);

然后利用一个二层循环,把到达每一个点的最小值求出来。返回返回右下角的值即可。

代码

    int minPathSum(vector<vector<int>>& grid) {
vector<vector<int>> cost = grid;
int n = grid.size(), m = grid[0].size();
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
//处理第一行和第一列的情况,如果不处理的话,数组会越界
if (i == 0) {
//一直向右走
cost[i][j] = cost[i][j - 1] + grid[i][j];
} else if (j == 0) {
//一直向下走
cost[i][j] = cost[i - 1][j] + grid[i][j];
} else {
//利用递推式求结果
cost[i][j] = min(cost[i][j - 1] + grid[i][j], cost[i - 1][j] + grid[i][j]);
}
}
}
//返回右下角值
return cost[n-1][m-1];
}

总结

  • 关键的一点就是找出递推式。看当前最优解能否被前面的值推出
  • 存储原来的数据一般可以用一个二维数组。但是有一些题目对空间有限制。比如LeetCode 413, 这样的话就要尽量去优化,看能不能用一维数组来代替。

类似题目

LeetCode 877

https://blog.csdn.net/qq874455953/article/details/82696196

LeetCode 64最小路径和的更多相关文章

  1. leetcode 64. 最小路径和 动态规划系列

    目录 1. leetcode 64. 最小路径和 1.1. 暴力 1.2. 二维动态规划 2. 完整代码及执行结果 2.1. 执行结果 1. leetcode 64. 最小路径和 给定一个包含非负整数 ...

  2. LeetCode 64. 最小路径和(Minimum Path Sum) 20

    64. 最小路径和 64. Minimum Path Sum 题目描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明: 每次只能向下或 ...

  3. Java实现 LeetCode 64 最小路径和

    64. 最小路径和 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], ...

  4. [LeetCode] 64. 最小路径和 ☆☆☆(动态规划)

    描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入:[  [1,3,1], [1,5,1 ...

  5. [LeetCode]64. 最小路径和(DP)

    题目 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4 ...

  6. Leetcode——64. 最小路径和

    题目描述:题目链接 同样对于这个问题,我们可以考虑用动态规划来解决. 解决动态规划常见的三个步骤: 1:问题的归纳.对于 i,j 位置上的最短路径可以用d[ i ][ j ]表示. 2:归纳递推式:d ...

  7. leetcode 64. 最小路径和Minimum Path Sum

    很典型的动态规划题目 C++解法一:空间复杂度n2 class Solution { public: int minPathSum(vector<vector<int>>&am ...

  8. Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)

    Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...

  9. Leetcode题目64.最小路径和(动态规划-中等)

    题目描述: 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], [1, ...

随机推荐

  1. 数据结构C语言实现----清空、销毁一个栈

    代码如下: #include<stdio.h> #include<stdlib.h> typedef struct { char *base; char *top; int s ...

  2. 感知机算法(PLA)代码实现

    目录 1. 引言 2. 载入库和数据处理 3. 感知机的原始形式 4. 感知机的对偶形式 5. 多分类情况-one vs. rest 6. 多分类情况-one vs. one 7. sklearn实现 ...

  3. vue组件库用markdown生成文档

    前言: 开发vue组件库需要提供组件的使用文档,最好是有渲染到浏览器的demo实例,既能操作又能查看源代码.markdown作为常用的文档编写载体,如果能在里面直接写vue组件,同时编写使用说明就再好 ...

  4. 水题----根据O出现次数判断分数

    There is an objective test result such as \OOXXOXXOOO". An `O' means a correct answer of a prob ...

  5. 一个完全关于android编程的技术博客网站

    https://www.oschina.net/android/96/file-process

  6. 使用expect在script中切换到root用户(精华)

    使用expect在script中切换到root用户 1.尚观版本 http://www.uplook.cn/biancheng/133/1335040/ 1 a. 命令行: /usr/bin/expe ...

  7. laravel 验证码使用示例

    一.去https://packagist.org/网站搜索验证码的代码依赖,关键词:captcha 地址:https://packagist.org/packages/mews/captcha 二.环 ...

  8. ken桑带你读源码之scrapy downloadermiddlewares

    downloadermiddlewares  文件夹是下载中间件 其中  process_request   还没请求时的处理函数 process_response  请求之后的处理函数 chunke ...

  9. Django学习路12_objects 方法(all,filter,exclude,order by,values)

    Person.objects.all() 获取全部数据 def get_persons(request): persons = Person.objects.all() # 获取全部数据 contex ...

  10. PHP array_replace_recursive() 函数

    实例 递归地使用第二个数组($a2)的值替换第一个数组($a1)的值: <?php$a1=array("a"=>array("red")," ...