LeetCode 64最小路径和
题目
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
解释
此题运用的是动态规划, 而且和很多题目非常相似,题目要求每次只能向下走一步或者向右走一步。这就规定走到这一个点的路径只有两点,就是上面的点和左边的点。所以每一点的最小cost可以表示为
min(到达上面的点的最小cost, 到达左边的点的最小cost) + 当前点的 cost
这样就把问题分成子问题,创建一个二维数组cost用来保存到达每一点的最小cost。
递归式可以表示为
cost[i][j] = min(cost[i][j - 1] + grid[i][j], cost[i - 1][j] + grid[i][j]);
然后利用一个二层循环,把到达每一个点的最小值求出来。返回返回右下角的值即可。
代码
int minPathSum(vector<vector<int>>& grid) {
vector<vector<int>> cost = grid;
int n = grid.size(), m = grid[0].size();
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
//处理第一行和第一列的情况,如果不处理的话,数组会越界
if (i == 0) {
//一直向右走
cost[i][j] = cost[i][j - 1] + grid[i][j];
} else if (j == 0) {
//一直向下走
cost[i][j] = cost[i - 1][j] + grid[i][j];
} else {
//利用递推式求结果
cost[i][j] = min(cost[i][j - 1] + grid[i][j], cost[i - 1][j] + grid[i][j]);
}
}
}
//返回右下角值
return cost[n-1][m-1];
}
总结
- 关键的一点就是找出递推式。看当前最优解能否被前面的值推出
- 存储原来的数据一般可以用一个二维数组。但是有一些题目对空间有限制。比如LeetCode 413, 这样的话就要尽量去优化,看能不能用一维数组来代替。
类似题目
LeetCode 877
https://blog.csdn.net/qq874455953/article/details/82696196
LeetCode 64最小路径和的更多相关文章
- leetcode 64. 最小路径和 动态规划系列
目录 1. leetcode 64. 最小路径和 1.1. 暴力 1.2. 二维动态规划 2. 完整代码及执行结果 2.1. 执行结果 1. leetcode 64. 最小路径和 给定一个包含非负整数 ...
- LeetCode 64. 最小路径和(Minimum Path Sum) 20
64. 最小路径和 64. Minimum Path Sum 题目描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明: 每次只能向下或 ...
- Java实现 LeetCode 64 最小路径和
64. 最小路径和 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], ...
- [LeetCode] 64. 最小路径和 ☆☆☆(动态规划)
描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入:[ [1,3,1], [1,5,1 ...
- [LeetCode]64. 最小路径和(DP)
题目 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4 ...
- Leetcode——64. 最小路径和
题目描述:题目链接 同样对于这个问题,我们可以考虑用动态规划来解决. 解决动态规划常见的三个步骤: 1:问题的归纳.对于 i,j 位置上的最短路径可以用d[ i ][ j ]表示. 2:归纳递推式:d ...
- leetcode 64. 最小路径和Minimum Path Sum
很典型的动态规划题目 C++解法一:空间复杂度n2 class Solution { public: int minPathSum(vector<vector<int>>&am ...
- Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)
Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...
- Leetcode题目64.最小路径和(动态规划-中等)
题目描述: 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], [1, ...
随机推荐
- Spring声明式事务快速上手
1.什么是事务 首先我们要知道什么是事务.知其然,才能知其所以然. 事务(Transaction)是一个业务,是一个不可分割的逻辑工作单元,基于事务可以更好的保证业务的正确性. 这么说可能有点难以理解 ...
- [并发编程] -- 内存模型(针对JSR-133内存模型)篇
并发编程模型 1.两个关键问题 1)线程之间如何通信 共享内存程之间共享程序的公共状态,通过写-读内存中的公共状态进行隐式通信 消息传递程之间没有公共状态,线程之间必须通过发送消息来显式进行通信 2) ...
- Spring Boot使用AOP的正确姿势
一.为什么需要面向切面编程? 面向对象编程(OOP)的好处是显而易见的,缺点也同样明显.当需要为多个不具有继承关系的对象添加一个公共的方法的时候,例如日志记录.性能监控等,如果采用面向对象编程的方法, ...
- 最大连续区间(HDU-1540)
HDU1540 线段树最大连续区间. 给定长度为n的数组,m次操作. 操作D,删除给定节点. 操作R,恢复最后一个删除的节点. 操作Q,询问给定节点的最大连续区间 维护三个值,区间的最大左连续区间,最 ...
- 打开chm文件时出现“无法显示此页:确保 Web 地址 //ieframe.dll/dnserrordiagoff.htm# 正确”的解决办法
当我们打开chm文件时遇到下面这种情况: 解决方法: 1.一般情况下无法显示网页:右键 chm文件属性里最下面有个"解除锁定",点击"解除锁定"按钮就可以了. ...
- redis基本操作介绍
一.字符串 单个设置:set key value,如果key不存在则设置键值对,如果存在则修改 批量设置:mset key1 value1 [key2 value2] 单个获取:get key,如果k ...
- animate动画基础
定义: animate() 方法执行 CSS 属性集的自定义动画. 1.该方法通过CSS样式将元素从一个状态改变为另一个状态.CSS属性值是逐渐改变的,这样就可以创建动画效果. 2.只有数字值可创建动 ...
- python学习笔记1 -- 函数式编程之高阶函数 sorted排序
python提供了很强大的内置排序函数,妈妈再也不担心我不会写冒泡排序了呀,sorted函数就是这个排序函数,该函数参数准确的说有四个,sorted(参数1,参数2,参数3,参数4). 参数1 是需要 ...
- Redis服务之常用配置(二)
上一篇博客我们聊了下redis的INCLUDE.NETWORK.GENERAL配置段相关配置和说明,回顾请参考:https://www.cnblogs.com/qiuhom-1874/p/133831 ...
- Python os.lchflags() 方法
概述 os.lchflags() 方法用于设置路径的标记为数字标记,类似 chflags(),但是没有软链接.高佣联盟 www.cgewang.com 只支持在 Unix 下使用. 语法 lchfla ...