基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题

这天,lyk又和gcd杠上了。
它拥有一个n个数的数列,它想实现两种操作。

1:将  ai 改为b。
2:给定一个数i,求所有 gcd(i,j)=1 时的  aj  的总和。

Input
第一行两个数n,Q(1<=n,Q<=100000)。
接下来一行n个数表示ai(1<=ai<=10^4)。
接下来Q行,每行先读入一个数A(1<=A<=2)。
若A=1,表示第一种操作,紧接着两个数i和b。(1<=i<=n,1<=b<=10^4)。
若B=2,表示第二种操作,紧接着一个数i。(1<=i<=n)。
Output
对于每个询问输出一行表示答案。
Input示例
5 3
1 2 3 4 5
2 4
1 3 1
2 4
Output示例
9
7
思路 考虑辅助数组f[i]表示所有下标为i的倍数的a数组的总和。 例如有5个数,那么f[1]=a[1]+a[2]+a[3]+a[4]+a[5],f[2]=a[2]+a[4],f[3]=a[3],f[4]=a[4],f[5]=a[5]。
对于每一个修改操作,我们只需要求出i的所有因数,然后将下标为它的因数的f数组中修改值即可。
对于所有询问操作,求出i的所有因数p1,p2,p3...之后答案即为Σu[pi]*f[pi]。
其中u为mobius函数。
总复杂度为所有操作中i的因数个数总和。

利用容斥定理----

先将每个数加到它的约数里---

然后每次利用容斥定理求出和 i 不互素的数的和---

总和-求的和就为所要的解


#include<cstdio>
#include<cmath>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
#define LL long long
vector <int > sta[];
int shu[];
int ou[],ll;
int qu[],kkp;
LL pp[];
void init(int n)
{
int su[],kp=;
bool fa[];
memset(fa,true,sizeof(fa));
for (int i=;i<=n;i++)
{
if (fa[i])
{
su[kp++]=i;
if (i<=sqrt(n))
for (int j=i*i;j<=n;j+=i)
fa[j]=false;
}
}
for (int i=;i<=n;i++)
{
int ll=;
int kk=i;
for (int j=;su[j]*su[j]<=kk;j++)
{
if (kk%su[j]==)
ou[ll++]=su[j];
while (kk%su[j]==)
kk/=su[j];
}
if (kk>)
ou[ll++]=kk;
kkp=;
qu[kkp++]=-;
for (int j=;j<ll;j++)
{
kk=kkp;
for (int k=;k<kk;k++)
qu[kkp++]=qu[k]*ou[j]*-;
}
for (int j=;j<kkp;j++)
sta[i].push_back(qu[j]);
}
}
int main()
{
int n,k;
/*freopen("In.txt","r",stdin);
freopen("wo.txt","w",stdout);*/
scanf("%d%d",&n,&k);
init(n);
LL s=,ans;
memset(pp,,sizeof(pp));
for (int i=;i<=n;i++)
{
scanf("%d",&shu[i]);
for (int j=;j<sta[i].size();j++)
{
if (sta[i][j]>)
pp[sta[i][j]]+=shu[i];
else
pp[-sta[i][j]]+=shu[i];
}
s+=shu[i];
}
int a,b,c;
while (k--)
{
scanf("%d",&c);
if (c==)
{
scanf("%d%d",&a,&b);
for (int j=;j<sta[a].size();j++)
{
if (sta[a][j]>)
pp[sta[a][j]]-=shu[a];
else
pp[-sta[a][j]]-=shu[a];
}
s-=shu[a];
shu[a]=b;
for (int j=;j<sta[a].size();j++)
{
if (sta[a][j]>)
pp[sta[a][j]]+=shu[a];
else
pp[-sta[a][j]]+=shu[a];
}
s+=shu[a];
}
else
{
scanf("%d",&a);
if (a==)
{
printf("%lld\n",s);
continue;
}
ans=;
for (int i=;i<sta[a].size();i++)
{
if (sta[a][i]<)
ans-=pp[-sta[a][i]];
else
ans+=pp[sta[a][i]];
}
ans=s-ans;
printf("%lld\n",ans);
}
}
return ;
}

这道题是我复制借鉴的http://blog.csdn.net/leibniz_zhang/article/details/52318715这位大佬的 = =


51nod lyk与gcd的更多相关文章

  1. 51nod 1678 lyk与gcd | 容斥原理

    51nod 200题辣ψ(`∇´)ψ !庆祝! 51nod 1678 lyk与gcd | 容斥原理 题面 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作. 1:将 ai 改为 ...

  2. 51nod1678 lyk与gcd

    容斥定理所以可以用莫比乌斯函数来搞.逆向思维答案等于总和减去和他互质的.那么设f[i]=∑a[j] i|j.ans[i]=sum- ∑mo[j]*f[j] 跟bzoj2440那道题挺像的都是利用莫比乌 ...

  3. 51 Nod 1678 lyk与gcd

    1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将  ai  ...

  4. 51 Nod 1678 lyk与gcd(容斥原理)

    1678 lyk与gcd  基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作 ...

  5. 1678 lyk与gcd

    1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将  ai 改为b.2:给定一个数i,求所有 ...

  6. [51nod]1678 lyk与gcd(莫比乌斯反演)

    题面 传送门 题解 和这题差不多 //minamoto #include<bits/stdc++.h> #define R register #define pb push_back #d ...

  7. 51NOD 1594:Gcd and Phi——题解

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1594 参考及详细推导:http://www.cnblogs.com/ri ...

  8. 【51nod】2026 Gcd and Lcm

    题解 话说LOJ说我今天宜学数论= =看到小迪学了杜教筛去蹭了一波小迪做的题 标解的杜教筛的函数不懂啊,怎么推的毫无思路= = 所以写了个复杂度稍微高一点的?? 首先,我们发现f是个积性函数,那么我们 ...

  9. 【51nod】1594 Gcd and Phi

    题解 跟随小迪学姐的步伐,学习一下数论 小迪学姐太巨了! 这道题的式子很好推嘛 \(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{d|\phi(i),\phi(j)} ...

随机推荐

  1. 有效解决 iOS The document “(null)” requires Xcode 8.0 or later.

    下载了一个 xocde8beta版本   运行之后   结果 在xcode7.3上再运行 就报这句错误   以下链接 是非常有效的解决办法 不信你试试 [链接]Thisversiondoesnotsu ...

  2. 使用windows服务更新站点地图

    由于公司平台访问人数逐渐增多,公司项目的数据库已经几次出现宕机现象.为减轻数据库压力,我上个月对公司项目做了下调整.把新闻板块提取出来单独一个站点,单独一个数据库.减少了主站点和数据库的负担和压力. ...

  3. php文件下载

    public function down() { $lang = strtolower(cookie('think_language')); if ($lang == 'en-us') { $file ...

  4. UML类图的关系

    多态 泛化(Generalization) [定义]:是一种继承关系,表示一般与特殊的关系,它指定了子类如何特化父类的所有特征和行为 [UML表示]:带三角箭头的实线,箭头指向父类 [代码表现]:A类 ...

  5. MVC 多语言记录1 设置默认的ResourceType

    http://stackoverflow.com/questions/3260748/default-resource-for-data-annotations-in-asp-net-mvc Add ...

  6. easy ui 1.4的NumberBox,失去焦点后不能再次输入小数点

    这也是1.4版本的bug,现在1.4.1也发布了,经验证,该问题在新版本中已经解决了 在网上找到的解决办法,地址:http://www.jeasyui.com/forum/index.php?topi ...

  7. Mongodb Manual阅读笔记:CH4 管理

    4 管理 Mongodb Manual阅读笔记:CH2 Mongodb CRUD 操作Mongodb Manual阅读笔记:CH3 数据模型(Data Models)Mongodb Manual阅读笔 ...

  8. JavaWeb防止表单重复提交(转载)

    转载自:http://blog.csdn.net/ye1992/article/details/42873219 在平时开发中,如果网速比较慢的情况下,用户提交表单后,发现服务器半天都没有响应,那么用 ...

  9. linux cpu占有率居高不下 调试

    今天调试程序,使用top命令后,发现程序的cpu占有率很高,一直在99,这很可怕,所以来调试. 使用top命令,得如下结果 PID USER PR NI VIRT RES SHR S %CPU %ME ...

  10. x01.os.11: IPC 路线图

    学习的最好方法就是看代码,所以我们不妨跟着 IPC 的调用路线图,来学习学习 IPC. 从 x01.Lab.Download 下载代码后,首先进入 main.c 文件,在 TestA 中,有这么一句: ...