POJ 2398 - Toy Storage 点与直线位置关系
Toy Storage
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5439 Accepted: 3234 Description
Mom and dad have a problem: their child, Reza, never puts his toys away when he is finished playing with them. They gave Reza a rectangular box to put his toys in. Unfortunately, Reza is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for Reza to find his favorite toys anymore.
Reza's parents came up with the following idea. They put cardboard partitions into the box. Even if Reza keeps throwing his toys into the box, at least toys that get thrown into different partitions stay separate. The box looks like this from the top:
We want for each positive integer t, such that there exists a partition with t toys, determine how many partitions have t, toys.Input
The input consists of a number of cases. The first line consists of six integers n, m, x1, y1, x2, y2. The number of cardboards to form the partitions is n (0 < n <= 1000) and the number of toys is given in m (0 < m <= 1000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1, y1) and (x2, y2), respectively. The following n lines each consists of two integers Ui Li, indicating that the ends of the ith cardboard is at the coordinates (Ui, y1) and (Li, y2). You may assume that the cardboards do not intersect with each other. The next m lines each consists of two integers Xi Yi specifying where the ith toy has landed in the box. You may assume that no toy will land on a cardboard.A line consisting of a single 0 terminates the input.
Output
For each box, first provide a header stating "Box" on a line of its own. After that, there will be one line of output per count (t > 0) of toys in a partition. The value t will be followed by a colon and a space, followed the number of partitions containing t toys. Output will be sorted in ascending order of t for each box.Sample Input
4 10 0 10 100 0
20 20
80 80
60 60
40 40
5 10
15 10
95 10
25 10
65 10
75 10
35 10
45 10
55 10
85 10
5 6 0 10 60 0
4 3
15 30
3 1
6 8
10 10
2 1
2 8
1 5
5 5
40 10
7 9
0Sample Output
Box
2: 5
Box
1: 4
2: 1Source
我的“第一道”计算几何题=ω=
判断点在直线的哪一侧,机智地用了叉积

叉积同号代表在直线同侧,异号则在异侧,在直线上则为零。
//POJ 2398
//利用叉积判断点与直线位置关系
//C++11特性在ACM中不能用
//AC 2016.10.12 #include "cstdio"
#include "cstdlib"
#include "cmath"
#include "cstring"
#include "iostream"
#define MAXN 5010
#define MAXM 5010
using namespace std;
const double eps = 1E-8; int sgn(double x){
return (fabs(x)<eps)?0:((x>0)?1:-1);
} struct point{
double x, y;
point (){}
point (double X, double Y): x(X), y(Y){}
point operator - (const point &p){
return point(x - p.x, y - p.y);
}
double operator ^ (const point &p){
return x * p.y - y * p.x;
}
}toys[MAXM]; struct line {
point p1, p2;
line (){}
line (point P1, point P2): p1(P1), p2(P2) {}
}lines[MAXN]; template <typename T>
void swp(T &l1, T &l2){
T l = l1;
l1 = l2;
l2 = l;
} template <typename T>
void BubbleSort(T arr[], int n, bool (*cmp)(T, T)){
for (int i = 0; i < n; i++){
for (int j = 0; j < i; j++){
if (!cmp(arr[j], arr[i]))
swp<T>(arr[j], arr[i]);
}
}
} bool cmpline(line l1, line l2){
return l1.p1.x <= l2.p1.x;
} bool cmpint(int a, int b){
return a <= b;
} int n, m, X1, Y1, X2, Y2;
int ans[MAXN];
int main(){
freopen("fin.c", "r", stdin);
while (scanf("%d%d%d%d%d%d", &n, &m, &X1, &Y1, &X2, &Y2)){
if (!n) break;
puts("Box");
memset(ans, 0, sizeof (ans));
lines[0] = line(point(X1, Y1), point(X1, Y2));
for (int i = 1; i <= n; i++){
int u, l;
scanf("%d%d", &u, &l);
lines[i] = line(point(u, Y1), point(l, Y2));
}
lines[n + 1] = line(point(X2, Y1), point(X2, Y2));
BubbleSort<line>(lines, n + 2, cmpline);
for (int i = 0; i < m; i++){
int x, y;
scanf("%d%d", &x, &y);
toys[i] = point(x, y);
for (int j = 0; j <= n; j++){
double d1 = (lines[j].p2 - lines[j].p1) ^ (toys[i] - lines[j].p1);
double d2 = (lines[j + 1].p2 - lines[j + 1].p1) ^ (toys[i] - lines[j + 1].p1);
if (sgn(d1) != sgn(d2)){
ans[j]++;
break;
}
}
}
int avr = m/(n + 1);
BubbleSort<int>(ans, n + 1, cmpint);
for (int i = 0, cnt = 0, old = ans[0];
i <= n;
i++, cnt++, (ans[i] == old)?0:(old?printf("%d: %d\n", old, cnt):0, cnt = 0), old = ans[i]);
//puts("");
}
getchar();
return 0;
}
POJ 2398 - Toy Storage 点与直线位置关系的更多相关文章
- poj 2398 Toy Storage(计算几何)
题目传送门:poj 2398 Toy Storage 题目大意:一个长方形的箱子,里面有一些隔板,每一个隔板都可以纵切这个箱子.隔板将这个箱子分成了一些隔间.向其中扔一些玩具,每个玩具有一个坐标,求有 ...
- POJ 2318 TOYS && POJ 2398 Toy Storage(几何)
2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...
- 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage
题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...
- poj 2398 Toy Storage(计算几何 点线关系)
Toy Storage Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4588 Accepted: 2718 Descr ...
- POJ 2398 Toy Storage(计算几何,叉积判断点和线段的关系)
Toy Storage Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3146 Accepted: 1798 Descr ...
- POJ 2398 Toy Storage (叉积判断点和线段的关系)
题目链接 Toy Storage Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4104 Accepted: 2433 ...
- 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage
POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...
- 2018.07.04 POJ 2398 Toy Storage(二分+简单计算几何)
Toy Storage Time Limit: 1000MS Memory Limit: 65536K Description Mom and dad have a problem: their ch ...
- poj 2318 TOYS & poj 2398 Toy Storage (叉积)
链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...
随机推荐
- python built-in delattr()
delattr(object,name) 使用此函数必须保证name是可以被删除,即先调用setattr(object,name,value) name必须是字符串并且是object的属性. 函数的作 ...
- 知识积累:关于Memory
仅清除页面缓存(PageCache)# sync; echo 1 > /proc/sys/vm/drop_caches清除目录项和inode# sync; echo 2 > /proc/s ...
- Jquery选择器之基本选择器
id选择器 共同点: text:代表标签之间的文本值 返回值:均为列表 根据给定的ID值匹配一个标签元素,如果id值中有元字符(如 !"#$%&'()*+,./:;<=> ...
- MSSQL反旋转的例子
with cte as ( select 'A' as tag , as num_1 , as num_2 , as num_3 , as num_4 ,null as num_5 union sel ...
- ./configure,make,make install的作用(转)
这些都是典型的使用GNU的AUTOCONF和AUTOMAKE产生的程序的安装步骤. ./configure是用来检测你的安装平台的目标特征的.比如它会检测你是不是有CC或GCC,并不是需要CC或GCC ...
- HTML5外包团队-技术分享【使用HTML5的VIDEO标记播放RTSP视频流】
使用HTML5的VIDEO播放RTSP实时视频流源代码: <!DOCTYPE html> <html><head> <meta http-equiv=&quo ...
- 一个很奇怪的重复链接lib的问题
早上在调一个程序的时候感觉非常奇怪,就是数据在初始化的时候会失败,后来发现是获取一个数据的时候出错了 假设我们又一个config.lib,sql.dll和main.exe 因为数据库在打开数据库的时候 ...
- ES6转换为ES5
1.静态函数 1.什么是静态函数 静态函数最重要的就是不用创建一个实例变量就可以进行调用,在C++里面,无法访问this对象, 而在JS里面由于js的this对象支持,是可以访问this对象,只是th ...
- 1 、Linux-Rhel6终端介绍-Shell提示符
1.Linux 终端介绍 tty-控制台终端: RHEL6 tty1-tty6 tty就是图形界面 从图形界面切换到字符界面: ctrl+shift+alt +F2~F6 从字符界面切换图形或字符: ...
- ssh 协议执行repo sync 报错:Permission denied (publickey)
1.ssh key 已经添加ssh key到gerrit服务器,并且执行ssh协议的git clone可以正常克隆代码到本地,可见不是ssh key的问题. 2.manifest清单文件配置 最初在m ...
