POJ 2398 - Toy Storage 点与直线位置关系
Toy Storage
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5439 Accepted: 3234 Description
Mom and dad have a problem: their child, Reza, never puts his toys away when he is finished playing with them. They gave Reza a rectangular box to put his toys in. Unfortunately, Reza is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for Reza to find his favorite toys anymore.
Reza's parents came up with the following idea. They put cardboard partitions into the box. Even if Reza keeps throwing his toys into the box, at least toys that get thrown into different partitions stay separate. The box looks like this from the top:
We want for each positive integer t, such that there exists a partition with t toys, determine how many partitions have t, toys.Input
The input consists of a number of cases. The first line consists of six integers n, m, x1, y1, x2, y2. The number of cardboards to form the partitions is n (0 < n <= 1000) and the number of toys is given in m (0 < m <= 1000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1, y1) and (x2, y2), respectively. The following n lines each consists of two integers Ui Li, indicating that the ends of the ith cardboard is at the coordinates (Ui, y1) and (Li, y2). You may assume that the cardboards do not intersect with each other. The next m lines each consists of two integers Xi Yi specifying where the ith toy has landed in the box. You may assume that no toy will land on a cardboard.A line consisting of a single 0 terminates the input.
Output
For each box, first provide a header stating "Box" on a line of its own. After that, there will be one line of output per count (t > 0) of toys in a partition. The value t will be followed by a colon and a space, followed the number of partitions containing t toys. Output will be sorted in ascending order of t for each box.Sample Input
4 10 0 10 100 0
20 20
80 80
60 60
40 40
5 10
15 10
95 10
25 10
65 10
75 10
35 10
45 10
55 10
85 10
5 6 0 10 60 0
4 3
15 30
3 1
6 8
10 10
2 1
2 8
1 5
5 5
40 10
7 9
0Sample Output
Box
2: 5
Box
1: 4
2: 1Source
我的“第一道”计算几何题=ω=
判断点在直线的哪一侧,机智地用了叉积

叉积同号代表在直线同侧,异号则在异侧,在直线上则为零。
//POJ 2398
//利用叉积判断点与直线位置关系
//C++11特性在ACM中不能用
//AC 2016.10.12 #include "cstdio"
#include "cstdlib"
#include "cmath"
#include "cstring"
#include "iostream"
#define MAXN 5010
#define MAXM 5010
using namespace std;
const double eps = 1E-8; int sgn(double x){
return (fabs(x)<eps)?0:((x>0)?1:-1);
} struct point{
double x, y;
point (){}
point (double X, double Y): x(X), y(Y){}
point operator - (const point &p){
return point(x - p.x, y - p.y);
}
double operator ^ (const point &p){
return x * p.y - y * p.x;
}
}toys[MAXM]; struct line {
point p1, p2;
line (){}
line (point P1, point P2): p1(P1), p2(P2) {}
}lines[MAXN]; template <typename T>
void swp(T &l1, T &l2){
T l = l1;
l1 = l2;
l2 = l;
} template <typename T>
void BubbleSort(T arr[], int n, bool (*cmp)(T, T)){
for (int i = 0; i < n; i++){
for (int j = 0; j < i; j++){
if (!cmp(arr[j], arr[i]))
swp<T>(arr[j], arr[i]);
}
}
} bool cmpline(line l1, line l2){
return l1.p1.x <= l2.p1.x;
} bool cmpint(int a, int b){
return a <= b;
} int n, m, X1, Y1, X2, Y2;
int ans[MAXN];
int main(){
freopen("fin.c", "r", stdin);
while (scanf("%d%d%d%d%d%d", &n, &m, &X1, &Y1, &X2, &Y2)){
if (!n) break;
puts("Box");
memset(ans, 0, sizeof (ans));
lines[0] = line(point(X1, Y1), point(X1, Y2));
for (int i = 1; i <= n; i++){
int u, l;
scanf("%d%d", &u, &l);
lines[i] = line(point(u, Y1), point(l, Y2));
}
lines[n + 1] = line(point(X2, Y1), point(X2, Y2));
BubbleSort<line>(lines, n + 2, cmpline);
for (int i = 0; i < m; i++){
int x, y;
scanf("%d%d", &x, &y);
toys[i] = point(x, y);
for (int j = 0; j <= n; j++){
double d1 = (lines[j].p2 - lines[j].p1) ^ (toys[i] - lines[j].p1);
double d2 = (lines[j + 1].p2 - lines[j + 1].p1) ^ (toys[i] - lines[j + 1].p1);
if (sgn(d1) != sgn(d2)){
ans[j]++;
break;
}
}
}
int avr = m/(n + 1);
BubbleSort<int>(ans, n + 1, cmpint);
for (int i = 0, cnt = 0, old = ans[0];
i <= n;
i++, cnt++, (ans[i] == old)?0:(old?printf("%d: %d\n", old, cnt):0, cnt = 0), old = ans[i]);
//puts("");
}
getchar();
return 0;
}
POJ 2398 - Toy Storage 点与直线位置关系的更多相关文章
- poj 2398 Toy Storage(计算几何)
题目传送门:poj 2398 Toy Storage 题目大意:一个长方形的箱子,里面有一些隔板,每一个隔板都可以纵切这个箱子.隔板将这个箱子分成了一些隔间.向其中扔一些玩具,每个玩具有一个坐标,求有 ...
- POJ 2318 TOYS && POJ 2398 Toy Storage(几何)
2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...
- 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage
题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...
- poj 2398 Toy Storage(计算几何 点线关系)
Toy Storage Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4588 Accepted: 2718 Descr ...
- POJ 2398 Toy Storage(计算几何,叉积判断点和线段的关系)
Toy Storage Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3146 Accepted: 1798 Descr ...
- POJ 2398 Toy Storage (叉积判断点和线段的关系)
题目链接 Toy Storage Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4104 Accepted: 2433 ...
- 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage
POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...
- 2018.07.04 POJ 2398 Toy Storage(二分+简单计算几何)
Toy Storage Time Limit: 1000MS Memory Limit: 65536K Description Mom and dad have a problem: their ch ...
- poj 2318 TOYS & poj 2398 Toy Storage (叉积)
链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...
随机推荐
- 图论--最近公共祖先问题(LCA)模板
最近公共祖先问题(LCA)是求一颗树上的某两点距离他们最近的公共祖先节点,由于树的特性,树上两点之间路径是唯一的,所以对于很多处理关于树的路径问题的时候为了得知树两点的间的路径,LCA是几乎最有效的解 ...
- 基于MATLAB的GUI(Graphical User Interface)音频实时显示设计
摘要:本文章的设计主要讲基于matlab的gui音频实时显示设计,此次设计的gui相当于一个简洁的音乐播放器,界面只有”录音“和”播放“两个控件,哈哈,够简洁吧.通过”录音“按钮可以实现声音从电脑的声 ...
- [转]N种内核注入DLL的思路及实现
内核注入,技术古老但很实用.现在部分RK趋向无进程,玩的是SYS+DLL,有的无文件,全部存在于内存中.可能有部分人会说:“都进内核了.什么不能干?”.是啊,要是内核中可以做包括R3上所有能做的事,软 ...
- Property ClientHeight does not exist 问题解决
delphi的TFrame继承自另一个TFrame时,最好通过File->New->Other...->Delphi Projects->Inheritable Items 的 ...
- MSSQL 判断一个时间段是否在另一个时间段内!
MSSQL 判断一个时间段是否在另一个时间段内! 1 CREATE TABLE #B ( MeetingRoom int, BeginTime datetime, EndTime datetime ) ...
- TMS320C54x系列DSP指令和编程指南——第2章 通目标文件格式介绍
第2章 通用目标文件格式介绍 汇编器和连接器可以产生在TMS320C54x器件上执行的目标文件,这些目标文件的格式称为通用目标文件格式(COFF).采用COFF格式有利于程序的模式化编程,因为它支持用 ...
- 【uTenux实验】时间管理(系统时间/周期性处理/警报处理)
1.系统时间管理 系统时间管理函数用来对系统时间进行操作,是OS的一个基础性的东西.个人认为,设置系统时间和获取系统时间对OS来说基本是可有可无的. uTenux提供了三个系统时间相关API.分别用于 ...
- 用wamp配置的环境,想用CMD连接mysql怎么连
签:用wamp配置的环境 想用cmd连接mysql怎么连 进到d盘该目录 (cd切不了盘,就输入盘符加冒号回车,再cd到目录) WAMP装好后,mysql数据库运行时没有 mysql 和 ...
- mysql 数据库乱码解决
mysql 数据库乱码解决, 进入前加入 set names 'utf8' 即可.
- [SharpZipLib 未能加载文件或程序集] 解决方法
未能加载文件或程序集"ICSharpCode.SharpZipLib, Version=0.86.0.518, Culture=neutral, PublicKeyToken=1b03e6a ...
