Toy Storage
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5439   Accepted: 3234

Description

Mom and dad have a problem: their child, Reza, never puts his toys away when he is finished playing with them. They gave Reza a rectangular box to put his toys in. Unfortunately, Reza is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for Reza to find his favorite toys anymore. 
Reza's parents came up with the following idea. They put cardboard partitions into the box. Even if Reza keeps throwing his toys into the box, at least toys that get thrown into different partitions stay separate. The box looks like this from the top: 

We want for each positive integer t, such that there exists a partition with t toys, determine how many partitions have t, toys.

Input

The input consists of a number of cases. The first line consists of six integers n, m, x1, y1, x2, y2. The number of cardboards to form the partitions is n (0 < n <= 1000) and the number of toys is given in m (0 < m <= 1000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1, y1) and (x2, y2), respectively. The following n lines each consists of two integers Ui Li, indicating that the ends of the ith cardboard is at the coordinates (Ui, y1) and (Li, y2). You may assume that the cardboards do not intersect with each other. The next m lines each consists of two integers Xi Yi specifying where the ith toy has landed in the box. You may assume that no toy will land on a cardboard.

A line consisting of a single 0 terminates the input.

Output

For each box, first provide a header stating "Box" on a line of its own. After that, there will be one line of output per count (t > 0) of toys in a partition. The value t will be followed by a colon and a space, followed the number of partitions containing t toys. Output will be sorted in ascending order of t for each box.

Sample Input

4 10 0 10 100 0
20 20
80 80
60 60
40 40
5 10
15 10
95 10
25 10
65 10
75 10
35 10
45 10
55 10
85 10
5 6 0 10 60 0
4 3
15 30
3 1
6 8
10 10
2 1
2 8
1 5
5 5
40 10
7 9
0

Sample Output

Box
2: 5
Box
1: 4
2: 1

Source

我的“第一道”计算几何题=ω=

判断点在直线的哪一侧,机智地用了叉积

叉积同号代表在直线同侧,异号则在异侧,在直线上则为零。

//POJ 2398
//利用叉积判断点与直线位置关系
//C++11特性在ACM中不能用
//AC 2016.10.12 #include "cstdio"
#include "cstdlib"
#include "cmath"
#include "cstring"
#include "iostream"
#define MAXN 5010
#define MAXM 5010
using namespace std;
const double eps = 1E-8; int sgn(double x){
return (fabs(x)<eps)?0:((x>0)?1:-1);
} struct point{
double x, y;
point (){}
point (double X, double Y): x(X), y(Y){}
point operator - (const point &p){
return point(x - p.x, y - p.y);
}
double operator ^ (const point &p){
return x * p.y - y * p.x;
}
}toys[MAXM]; struct line {
point p1, p2;
line (){}
line (point P1, point P2): p1(P1), p2(P2) {}
}lines[MAXN]; template <typename T>
void swp(T &l1, T &l2){
T l = l1;
l1 = l2;
l2 = l;
} template <typename T>
void BubbleSort(T arr[], int n, bool (*cmp)(T, T)){
for (int i = 0; i < n; i++){
for (int j = 0; j < i; j++){
if (!cmp(arr[j], arr[i]))
swp<T>(arr[j], arr[i]);
}
}
} bool cmpline(line l1, line l2){
return l1.p1.x <= l2.p1.x;
} bool cmpint(int a, int b){
return a <= b;
} int n, m, X1, Y1, X2, Y2;
int ans[MAXN];
int main(){
freopen("fin.c", "r", stdin);
while (scanf("%d%d%d%d%d%d", &n, &m, &X1, &Y1, &X2, &Y2)){
if (!n) break;
puts("Box");
memset(ans, 0, sizeof (ans));
lines[0] = line(point(X1, Y1), point(X1, Y2));
for (int i = 1; i <= n; i++){
int u, l;
scanf("%d%d", &u, &l);
lines[i] = line(point(u, Y1), point(l, Y2));
}
lines[n + 1] = line(point(X2, Y1), point(X2, Y2));
BubbleSort<line>(lines, n + 2, cmpline);
for (int i = 0; i < m; i++){
int x, y;
scanf("%d%d", &x, &y);
toys[i] = point(x, y);
for (int j = 0; j <= n; j++){
double d1 = (lines[j].p2 - lines[j].p1) ^ (toys[i] - lines[j].p1);
double d2 = (lines[j + 1].p2 - lines[j + 1].p1) ^ (toys[i] - lines[j + 1].p1);
if (sgn(d1) != sgn(d2)){
ans[j]++;
break;
}
}
}
int avr = m/(n + 1);
BubbleSort<int>(ans, n + 1, cmpint);
for (int i = 0, cnt = 0, old = ans[0];
i <= n;
i++, cnt++, (ans[i] == old)?0:(old?printf("%d: %d\n", old, cnt):0, cnt = 0), old = ans[i]);
//puts("");
}
getchar();
return 0;
}

POJ 2398 - Toy Storage 点与直线位置关系的更多相关文章

  1. poj 2398 Toy Storage(计算几何)

    题目传送门:poj 2398 Toy Storage 题目大意:一个长方形的箱子,里面有一些隔板,每一个隔板都可以纵切这个箱子.隔板将这个箱子分成了一些隔间.向其中扔一些玩具,每个玩具有一个坐标,求有 ...

  2. POJ 2318 TOYS && POJ 2398 Toy Storage(几何)

    2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...

  3. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  4. poj 2398 Toy Storage(计算几何 点线关系)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4588   Accepted: 2718 Descr ...

  5. POJ 2398 Toy Storage(计算几何,叉积判断点和线段的关系)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3146   Accepted: 1798 Descr ...

  6. POJ 2398 Toy Storage (叉积判断点和线段的关系)

    题目链接 Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4104   Accepted: 2433 ...

  7. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  8. 2018.07.04 POJ 2398 Toy Storage(二分+简单计算几何)

    Toy Storage Time Limit: 1000MS Memory Limit: 65536K Description Mom and dad have a problem: their ch ...

  9. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

随机推荐

  1. struts2 的验证框架validation如何返回json数据 以方便ajax交互

    struts2 的验证框架validation简单,好用,但是input只能输出到jsp页面通过struts2的标签<s:fielderror  />才能取出,(EL应该也可以). 如果使 ...

  2. MFC resizer封装

    用法: #include "resizer.h" 在mfc对话框头文件里面添加成员: CResizer m_Resizer; mydialog.cpp里面: OnInitDialo ...

  3. ElasticSearch中的简单查询

    前言 最近修改项目,又看了下ElasticSearch中的搜索,所以简单整理一下其中的查询语句等.都是比较基础的.PS,好久没写博客了..大概就是因为懒吧.闲言少叙书归正传. 查询示例 http:// ...

  4. Linux安装gcc编译器详解

    本人使用的是CentOS 6.5 64位系统,由于在安装系统的时候并没有勾选安装gcc编译器,因此需要自行安装gcc编译器. 使用yum安装gcc 对于配备了yum的Linux发行版而言,安装gcc编 ...

  5. python---生成随机密码

    #简短地生成随机密码,包括大小写字母.数字,可以指定密码长度 from random import choice import string #python3中为string.ascii_letter ...

  6. 在 Windows上配置NativeScript CLI

    1.安装Node.js,到https://nodejs.org/下载安装 2.安装Chocolatey,https://chocolatey.org/,先看一下关于chocolatey的介绍: 安装方 ...

  7. JVM内存结构之二--新生代及新生代里的两个Survivor区(下一轮S0与S1交换角色,如此循环往复)、常见调优参数

    一.为什么会有年轻代 我们先来屡屡,为什么需要把堆分代?不分代不能完成他所做的事情么?其实不分代完全可以,分代的唯一理由就是优化GC性能.你先想想,如果没有分代,那我们所有的对象都在一块,GC的时候我 ...

  8. 【解决】SharePoint外部列表保存的日期/时间值不正确

    [问题描述]: 在SharePoint中创建一个外部列表后,通过工作流或直接通过外部列表中的新增向外部列表添加数据项.通过外部列表或数据库查看添加的数据项时发现日期类型字段的值都不正确,像是差了若干个 ...

  9. AX2012 审批流流转到已停用的域账号导致审批流停止

    AX 2012 中当审批流流转到某个节点时,如果在该节点的审批人的域账号被停用,审批流将会停止,会报如图的错误: 要解决这个问题,得修改标准功能,需要修改SysWorkflow和SysWorkflow ...

  10. Linux下编译带x264的ffmpeg的配置方法,包含SDL2

    一.环境准备 ffmpeg下载:http://www.ffmpeg.org/download.html x264下载:http://download.videolan.org/x264/snapsho ...